Tuesday, January 21, 2025

Supermassive Black Hole Caught Doing Something Never Seen Before




As far as supermassive black holes go, the one at the center of the Milky Way is relatively sedate.

But, even in its supposed quiescent state, Sagittarius A* is prone to the occasional belch or rupture – and now, using JWST, astronomers have recorded it doing something we've never seen before.

On 6 April 2024, the black hole let out a flare observed in mid-infrared wavelengths, followed by a radio flare counterpart.

Although Sgr A* belches out the occasional flare, this is the first time we've captured it in mid-infrared  one of the missing pieces of the puzzle of the black hole's behavior, according to a team led by astronomer Sebastiano von Fellenberg from the Max Planck Institute for Radio Astronomy in Germany.

"Sgr A*'s flare evolves and changes quickly, in a matter of hours, and not all of these changes can be seen at every wavelength," says astrophysicist Joseph Michail of the Smithsonian Astrophysical Observatory.

"For over 20 years, we've known what happens in the radio and Near-infrared (NIR) ranges, but the connection between them was never 100 percent clear. This new observation in mid-infrared fills in that gap."

Supermassive black holes are a crucial component to the ordering of the Universe as we know it, the nuclei around which galaxies cluster and revolve. They range from millions to billions of times the mass of the Sun, and exhibit a range of activity levels, from ravenously rampageous as they scarf down matter at a tremendous rate, to calm and quiescent.

Sgr A*, at the heart of the Milky Way and clocking in at 4.3 million solar masses, is the closest supermassive black hole we have access to. It's also on the quiescent end of the activity scale, which means we have a front row seat to small-scale black hole behavior that would be too faint to see were it taking place in another galaxy.

Astronomers have been closely watching the galactic center for decades in a range of wavelengths to record its strange blips and burps to learn more about the activity and dynamics of the most gravitationally extreme environment in the Milky Way galaxy.

Sgr A*'s presence creates a wild, turbulent region of space, with a huge torus of dust roiling around the supermassive black hole. Astronomers don't know what causes the flares in the region, but simulations suggest that it's an interaction between magnetic field lines in the disk of material that most closely orbits the black hole.

When two field lines get close enough together, the simulations suggest, they can join together in a way that releases a huge amount of energy that we can see as synchrotron emission  the radiation emitted by electrons accelerating along the magnetic field lines.

But we couldn't be sure, because we didn't have mid-infrared observations of one of these flares.

"Because mid-infrared sits between the submillimeter [far-infrared to microwave] and the near-infrared, it was keeping secrets locked away about the role of electrons, which have to cool to release energy to power the flares," Michail explains.

"Our new observations are consistent with the existing models and simulations, giving us one more strong piece of evidence to support the theory of what's behind the flares."

The observations were collected using JWST's mid-infrared instrument (MIRI); the Submillimeter Array jointly operated by the Smithsonian Astrophysical Observatory and Academia Sinica; NASA's Chandra X-ray Observatory; and NASA's Nuclear Spectroscopic Telescope Array, a gamma-ray observatory riding the International Space Station.



When JWST caught a flare that lasted around 40 minutes, they turned to the other instruments to see what they may have collected. There were no detections in the X- and gamma-ray regimes – likely because the electron acceleration wasn't high enough – but the Submillimeter Array caught a flare of radio waves lagging around 10 minutes behind the mid-infrared.

These results, the researchers say, are consistent with synchrotron radiation from a single population of cooling electrons accelerating through magnetic reconnection, magnetic turbulence, or a combination of both. However, there is a lot we still don't know – which means there's more work to be done.

"While our observations suggest that Sgr A*'s mid-infrared emission does indeed result from synchrotron emission from cooling electrons, there's more to understand about magnetic reconnection and the turbulence in Sgr A*'s accretion disk," von Fellenberg says.

"This first-ever mid-infrared detection, and the variability seen with the Submillimeter Array, has not only filled a gap in our understanding of what has caused the flare in Sgr A* but has also opened a new line of important inquiry."

Website: International Conference on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Monday, January 20, 2025

NASA reaches the limit of the Big Bang and finds something unusual — There are more than 40




The James Webb Space Telescope (JWST) of NASA recently delivered a remarkable finding by discovering individual stars in a galaxy 6.5 billion light years away. The incredible discovery was published by the Nature Astronomy magazine, proving JWST’s potential to explore distant galaxies even while providing fresh facts on the evolution of galaxies and dark matter.

Discovery of the curving of light by the cosmos: Analysis of Abell 370

The amazing thing about this discovery was where 44 different stars were magnified by the Abell 370 galaxy cluster, during which hurled gravitationally light path bending the magnification principle. The galaxy cluster fell between FRB 0605 and Earth; FRB 0605 was brought more forcefully into the front and closer to Earth.

To do this by distorting everything, it had to bend time: once all the light went out as though the stars were very much closer. This was enough to create an “Einstein Ring,” of which one familiar to the layman is based on his theory in 1915.

Hence, this is called “gravitational lensing,” technique that uses the gravitational field of a massive object to magnify light to background distant stars. The Dragon Arc looks like as if a string line is let fall over the galaxy and its “curves” at a specific viewing angle.

By using the colors of stars within the arc, scientists have found that many of them are red super giants, which are quite massive stars like: those nearing the end of their lives. Researchers now know that such characteristics are not always found in stars far out in the distant universe. Gravitational lensing has added cosmic twists to the study of stellar details, which were earlier considered impossible to detect.

Red super giants unveiled in the Dragon Arc System with James Webb Space Telescope

The size and brightness of red super giants like Betelgeuse and Aldebaran in our galaxy make them some of the most enormous and luminous stars known to exist. By detecting and observing such stars in a distant galaxy, JWST gives an unparalleled opportunity to astronomers for studying them in a distant galactic context completely excluded from our local galactic neighborhood.

While the red super giants are well understood in the nearby galaxies, knowledge on the kind of role they play in early galaxy is adding another layer to what we already know about stellar evolution. The discovery of red super giants in the Dragon Arc galaxy really helps to establish further in this context the process of the formation of galaxies.

These are stars in the final stages-they can give us some idea on how galaxies will evolve in the future across the universe. The detection of these supergiant red stars in a galaxy that is ages older indicates to the astronomers how the star-forming and stellar dying complexes within galaxies developed in the early years of galaxy evolution.

Dark matter and dark energy give insight to a rotation problem: A counterintuitive idea

Dark matter constitutes some 85% of the total mass of the universe and has properties missing in all other forms of matter and accounts for much of the gravitational interaction within our universe. Because of its heavy makeup, dark matter cannot be detected other than through its gravitational force.

Nevertheless, scientists speculate that when the cosmic dark matter meets an object, gravity is distorted. Thus, they believe that light is bent around galaxies and other large cosmic entities, they should be able to detect dark matter indirectly.

The said discovery of the James Webb Space Telescope is making history in the latest understanding of the universe: Starring a single star from a galaxy that is 6.5 billion years and light-years away. This could open fresh ways to inform the study of galaxy creations and how they evolve, since more detections are expected with time, thereby rendering JWST capable of revolutionizing our knowledge of the cosmos, including dark matter and how stars behave in the distant universe.

Website: International Conference on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Saturday, January 18, 2025

Fast control methods enable record-setting fidelity in superconducting qubit


The advance holds the promise to reduce error-correction resource overhead.




Quantum computing promises to solve complex problems exponentially faster than a classical computer, by using the principles of quantum mechanics to encode and manipulate information in quantum bits (qubits).

Qubits are the building blocks of a quantum computer. One challenge to scaling, however, is that qubits are highly sensitive to background noise and control imperfections, which introduce errors into the quantum operations and ultimately limit the complexity and duration of a quantum algorithm. To improve the situation, MIT researchers and researchers worldwide have continually focused on improving qubit performance.

In new work, using a superconducting qubit called fluxonium, MIT researchers in the Department of Physics, the Research Laboratory of Electronics (RLE), and the Department of Electrical Engineering and Computer Science (EECS) developed two new control techniques to achieve a world-record single-qubit fidelity of 99.998 percent. This result complements then-MIT researcher Leon Ding’s demonstration last year of a 99.92 percent two-qubit gate fidelity.

The paper’s senior authors are David Rower PhD ’24, a recent physics postdoc in MIT’s Engineering Quantum Systems (EQuS) group and now a research scientist at the Google Quantum AI laboratory; Leon Ding PhD ’23 from EQuS, now leading the Calibration team at Atlantic Quantum; and William D. Oliver, the Henry Ellis Warren Professor of EECS and professor of physics, leader of EQuS, director of the Center for Quantum Engineering, and RLE associate director. The paper recently appeared in the journal PRX Quantum.

Decoherence and counter-rotating errors

A major challenge with quantum computation is decoherence, a process by which qubits lose their quantum information. For platforms such as superconducting qubits, decoherence stands in the way of realizing higher-fidelity quantum gates.

Quantum computers need to achieve high gate fidelities in order to implement sustained computation through protocols like quantum error correction. The higher the gate fidelity, the easier it is to realize practical quantum computing.

MIT researchers are developing techniques to make quantum gates, the basic operations of a quantum computer, as fast as possible in order to reduce the impact of decoherence. However, as gates get faster, another type of error, arising from counter-rotating dynamics, can be introduced because of the way qubits are controlled using electromagnetic waves.

Single-qubit gates are usually implemented with a resonant pulse, which induces Rabi oscillations between the qubit states. When the pulses are too fast, however, “Rabi gates” are not so consistent, due to unwanted errors from counter-rotating effects. The faster the gate, the more the counter-rotating error is manifest. For low-frequency qubits such as fluxonium, counter-rotating errors limit the fidelity of fast gates.

“Getting rid of these errors was a fun challenge for us,” says Rower. “Initially, Leon had the idea to utilize circularly polarized microwave drives, analogous to circularly polarized light, but realized by controlling the relative phase of charge and flux drives of a superconducting qubit. Such a circularly polarized drive would ideally be immune to counter-rotating errors.”

While Ding’s idea worked immediately, the fidelities achieved with circularly polarized drives were not as high as expected from coherence measurements.

“Eventually, we stumbled on a beautifully simple idea,” says Rower. “If we applied pulses at exactly the right times, we should be able to make counter-rotating errors consistent from pulse-to-pulse. This would make the counter-rotating errors correctable. Even better, they would be automatically accounted for with our usual Rabi gate calibrations!”

They called this idea “commensurate pulses,” since the pulses needed to be applied at times commensurate with intervals determined by the qubit frequency through its inverse, the time period. Commensurate pulses are defined simply by timing constraints and can be applied to a single linear qubit drive. In contrast, circularly polarized microwaves require two drives and some extra calibration.

“I had much fun developing the commensurate technique,” says Rower. “It was simple, we understood why it worked so well, and it should be portable to any qubit suffering from counter-rotating errors!”

“This project makes it clear that counter-rotating errors can be dealt with easily. This is a wonderful thing for low-frequency qubits such as fluxonium, which are looking more and more promising for quantum computing.”

Fluxonium’s promise

Fluxonium is a type of superconducting qubit made up of a capacitor and Josephson junction; unlike transmon qubits, however, fluxonium also includes a large “superinductor,” which by design helps protect the qubit from environmental noise. This results in performing logical operations, or gates, with greater accuracy.

Despite having higher coherence, however, fluxonium has a lower qubit frequency that is generally associated with proportionally longer gates.

“Here, we’ve demonstrated a gate that is among the fastest and highest-fidelity across all superconducting qubits,” says Ding. “Our experiments really show that fluxonium is a qubit that supports both interesting physical explorations and also absolutely delivers in terms of engineering performance.”

With further research, they hope to reveal new limitations and yield even faster and higher-fidelity gates.

“Counter-rotating dynamics have been understudied in the context of superconducting quantum computing because of how well the rotating-wave approximation holds in common scenarios,” says Ding. “Our paper shows how to precisely calibrate fast, low-frequency gates where the rotating-wave approximation does not hold.”

Physics and engineering team up

“This is a wonderful example of the type of work we like to do in EQuS, because it leverages fundamental concepts in both physics and electrical engineering to achieve a better outcome,” says Oliver. “It builds on our earlier work with non-adiabatic qubit control, applies it to a new qubit  fluxonium and makes a beautiful connection with counter-rotating dynamics.”

The science and engineering teams enabled the high fidelity in two ways. First, the team demonstrated “commensurate” (synchronous) non-adiabatic control, which goes beyond the standard “rotating wave approximation” of standard Rabi approaches. This leverages ideas that won the 2023 Nobel Prize in Physics for ultrafast “attosecond” pulses of light.

Secondly, they demonstrated it using an analog to circularly polarized light. Rather than a physical electromagnetic field with a rotating polarization vector in real x-y space, they realized a synthetic version of circularly polarized light using the qubit’s x-y space, which in this case corresponds to its magnetic flux and electric charge.

The combination of a new take on an existing qubit design (fluxonium) and the application of advanced control methods applied to an understanding of the underlying physics enabled this result.

Platform-independent and requiring no additional calibration overhead, this work establishes straightforward strategies for mitigating counter-rotating effects from strong drives in circuit quantum electrodynamics and other platforms, which the researchers expect to be helpful in the effort to realize high-fidelity control for fault-tolerant quantum computing.

Website: International Conference on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Friday, January 17, 2025

Quantum Physics Just Got Even Stranger: Meet the Mysterious Paraparticles




Rice University physicists have mathematically unveiled the possibility of paraparticles, which defy the traditional binary classification of particles into bosons and fermions.

Their research, which delves into the realms of abstract algebra and condensed matter, hints at groundbreaking applications in quantum computing and information systems, suggesting an exciting, albeit speculative, future for new material properties and particle behavior.

Breaking Conventional Particle Categories

Since the early days of quantum mechanics, scientists have believed that all particles fall into one of two categories  bosons or fermions defined by their distinct behaviors.

However, recent research by Rice University physicist Kaden Hazzard and former graduate student Zhiyuan Wang challenges this idea. Their study, published in Nature on January 8, provides a mathematical framework suggesting the potential existence of paraparticles  particles that defy the traditional classification and were once thought impossible.

“We determined that new types of particles we never knew of before are possible,” said Hazzard, associate professor of physics and astronomy.

Quantum mechanics has long held that all observable particles are either fermions or bosons. These two types of particles are distinguished by how they behave when near other particles in a given quantum state. Bosons are able to congregate in unlimited numbers, whereas only one fermion can exist in a given state. This behavior of fermions is referred to as the Pauli exclusion principle, which states that no more than two electrons, each with opposite spins, can occupy the same orbital in an atom.

This behavior is responsible for the whole structure of the perodic table,” said Hazzard. “It’s also why you don’t just go through your chair when you sit down.”

Historical Context and Theoretical Advances

In the 1930s and 1940s, researchers began trying to understand whether other types of particles could exist. A concrete quantum theory of such particles, known as paraparticles, was formulated in 1953 and extensively studied by the high energy physics community. However, by the 1970s, mathematical studies seemed to show that so-called paraparticles were actually just bosons or fermions in disguise. The one exception was the existence of anyons, an exotic type of particle that exists only in two dimensions.

Modern Mathematical Approaches Reveal New Possibilities

However, the mathematical theories of the 1970s and beyond were based on assumptions that are not always true in physical systems. Using a solution to the Yang-Baxter equation, an equation useful for describing the interchange of particles, along with group theory and other mathematical tools, Hazzard and Wang set to work to show that paraparticles could theoretically exist and be fully compatible with the known constraints of physics.

The researchers focused on excitations, which can be thought of as particles, in condensed matter systems such as magnets to provide a concrete example for how paraparticles can emerge in nature. “Particles aren’t just these fundamental things,” said Hazzard. “They’re also important in describing materials.”

“This is cross-disciplinary research that involves several areas of theoretical physics and mathematics,” said Wang, now a postdoctoral researcher at the Max Planck Institute of Quantum Optics in Germany.

Implications for Quantum Mechanics and Beyond

Using advanced mathematics, such as Lie algebra, Hopf algebra, and representation theory, as well as a pictorial method based on something known as tensor network diagrams to better handle equations, Hazzard and Wang were able to perform abstract algebraic calculations to develop models of condensed matter systems where paraparticles emerge. They showed that, unlike fermions or bosons, paraparticles behave in strange ways when they exchange their positions with the internal states of the particles transmuting during the process.

Future Directions and Speculative Applications

While they are groundbreaking on their own, these models are the first step toward a better understanding of many new physical phenomena that could occur in paraparticle systems. Further development of this theory could guide experiments that could detect paraparticles in the excitations of condensed matter systems. “To realize paraparticles in experiments, we need more realistic theoretical proposals,” said Wang.

The discovery of new elementary particles and properties in materials could be used in quantum information and computation such as secretly communicating information by manipulating the internal states of particles.

Contemplating possible applications is in its infancy and still mostly speculation. This study is an early step in the study of parastatistics in condensed matter systems, but where these findings could lead is uncertain. Further exploration of the new types of theories discovered and observation of paraparticles in condensed matter systems and other materials will be subjects for research in the future.

Website: International Conference on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Saturday, January 11, 2025

Inside the Tokamak: Scientists Crack the Code to Stable Fusion Energy



Researchers are closing in on the potential of nuclear fusion, the process that powers the stars, as a clean and inexhaustible energy source.

At the heart of this effort is the tokamak reactor design, which uses magnetic fields to confine plasma and maintain the necessary conditions for fusion. A critical challenge has been managing the plasma edge instabilities, but recent breakthroughs in understanding how energetic particles interact with these instabilities suggest promising methods for improving reactor performance.

Sustainable Energy and Nuclear Fusion

Developing sustainable energy sources capable of meeting global energy demand is one of today’s most pressing scientific challenges. Among the potential solutions, nuclear fusion  the process that powers the stars stands out as a clean, virtually limitless energy source.

The most promising approach to fusion energy is the tokamak reactor, which uses magnetic fields to confine plasma. High plasma confinement is critical for the success of nuclear fusion power plants and is the ultimate goal of ITER, the world’s largest tokamak, currently being constructed in Cadarache, France. A key factor in achieving this is maintaining plasma edge stability, which plays a vital role in effective confinement.

In current tokamaks, edge instabilities, known as Edge Localized Modes (ELMs), cause significant particle and energy losses, much like solar flares erupting at the Sun’s surface. These losses can lead to erosion and extreme heat fluxes on the reactor’s plasma-facing components conditions that would be unsustainable for future fusion power plants.

Role of Energetic Particles in Fusion Reactors

Energetic (suprathermal) particles constitute an essential source of momentum and energy, especially in future burning plasmas. They must be well confined to guarantee a self-sustaining fusion reaction. An international collaboration has studied the impact of energetic ions on these ELMs. They have combined experiments, modeling, and simulations to understand the behavior of ELMs in the presence of energetic particles. The measurements were obtained by the team at the ASDEX Upgrade tokamak, a fusion device located at the Max Planck Institute for Plasma Physics (Garching, Germany). The simulations were done using a hybrid code named MEGA, which calculates the self-consistent interaction between the ELMs and energetic particles. Comparison of the modeling results to the experimental data provides a new physics understanding of ELMs in the presence of energetic particles. The results indicate that the spatio-temporal structure of ELMs is largely affected by the energetic particle population and indicate that the interaction mechanism between ELMs and energetic particles is a resonant energy exchange between them.

New Insights from Fusion Research

This interaction mechanism helps to qualitatively understand the striking similarities between the experimental signatures of ELMs visible in magnetic diagnostics and in fast-ion loss detectors. This experimental and computational work, which has been done within the framework of the European fusion consortium EUROfusion, has recently been published in Nature Physics.

“In our publication, we demonstrate that energetic ion kinetic effects can alter the spatio-temporal structure of the edge localized modes. The effect is analogous to a surfer riding the wave. The surfer leaves footprints on the wave when riding it. In a plasma, the energetic particle interacts with the MHD wave (the ELM) and can change its spatio-temporal pattern. Our results can have important implications for the optimization of ELM control techniques. For instance, we could use energetic particles as active actuator in the control of these MHD waves “, says main author Jesús José Domínguez-Palacios Durán.

This is a groundbreaking work, that provides, for the first time, a detailed understanding of the interaction between energetic ions and ELMs. The results indicate that, for ITER, a strong energy and momentum exchange between ELMs and energetic ions is expected.

Website: International Conference on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Friday, January 10, 2025

Scientists Create Split-Electrons, Unlocking the Future of Quantum Computing



Topological quantum computers a step closer with a new method to ‘split’ electrons.

Electrons, once thought to be indivisible, may display behaviors suggesting they can split into two halves under quantum interference. Groundbreaking research explores how nanoelectronic circuits, governed by quantum mechanics, allow electrons to choose pathways and interfere with themselves, creating effects akin to the mysterious Majorana fermion.

Quantum Physics Meets Nano-Scale Electronics

Scientists have long understood electrons as indivisible, fundamental particles. However, groundbreaking research reveals that a peculiar feature of quantum mechanics can create states that mimic the behavior of half an electron. These so-called “split-electrons” could be pivotal in advancing quantum computing.

The discovery, recently published in Physical Review Letters, was led by Professor Andrew Mitchell from University College Dublin’s School of Physics and Dr. Sudeshna Sen from the Indian Institute of Technology in Dhanbad. Both are theoretical physicists specializing in the quantum properties of nanoscale electronic circuits.

Quantum Mechanics Redefines Miniaturized Electronics

“The miniaturization of electronics has reached the point now where circuit components are just nanometers across. At that scale, the rules of the game are set by quantum mechanics, and you have to give up your intuition about the way things work,” said Dr. Sen. “A current flowing through a wire is actually made up of lots of electrons, and as you make the wire smaller and smaller, you can watch the electrons go through one-by-one. We can now even make transistors which work with just a single electron.”

When a nanoelectronic circuit is designed to give electrons the ‘choice’ of two different pathways, quantum interference takes place. Professor Mitchell explained: “The quantum interference we see in such circuits is very similar to that observed in the famous double-slit experiment.”

The Double-Slit Experiment’s Wave-Like Insights

The double-slit experiment demonstrates the wave-like properties of quantum particles like the electron, which led to the development of quantum mechanics in the 1920s. Individual electrons are fired at a screen with two tiny apertures, and the place they end up is recorded on a photographic plate on the other side. Because the electrons can pass through either slit, they interfere with each other. In fact, a single electron can interfere with itself, just like a wave does when it passes through both slits at the same time. The result is an interference pattern of alternating high and low-intensity stripes on the back screen. The probability of finding an electron in certain places can be zero due to destructive interference – think of the peaks and troughs of two waves colliding and canceling each other out.

Electrons Behaving as Majorana Fermions

Professor Mitchell said: “It’s the same thing in a nanoelectronic circuit. Electrons going down different paths in the circuit can destructively interfere and block the current from flowing. This phenomenon has been observed before in quantum devices. The new thing that we found is that by forcing multiple electrons close enough together that they strongly repel each other, the quantum interference gets changed. Even though the only fundamental particles in the circuit are electrons, collectively they can behave as if the electron has been split in two.”

Majorana Fermions and Quantum Computation Potential

The result is a so-called ‘Majorana fermion’ – a particle first theorized by mathematicians in 1937 but as yet not isolated experimentally. The finding is potentially important for the development of new quantum technologies, if the Majorana particle can be created in an electronic device and manipulated.

“There has been a big search for Majoranas over the last few years because they are a key ingredient for proposed topological quantum computers,” Professor Mitchell said. “We might have found a way to produce them in nanoelectronics devices by using the quantum interference effect.”

Website: International Conference on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Thursday, January 9, 2025

Supercomputers Unlock Matter’s Blueprint in 3D




Physicists turn to supercomputers to help build a 3D picture of the structures of protons and neutrons.

A team of scientists has made exciting advances in mapping the internal components of hadrons. They employed complex quantum chromodynamics and supercomputer simulations to explore how quarks and gluons interact within protons, aiming to unravel mysteries like the proton’s spin and internal energy distribution.

Unveiling the Parton Landscape

Deep within what we think of as solid matter lies a dynamic and ever-changing landscape. The core components of an atom’s nucleus particles called hadrons, which include protons and neutrons  are made up of a turbulent mix of interacting quarks and gluons, collectively referred to as partons.

A team of physicists, known as the HadStruc Collaboration, is working to map these partons and unravel how their interactions give rise to hadrons. Based at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility, the group has been developing a mathematical framework to describe these complex interactions. Their latest research was recently published in the Journal of High Energy Physics.

The HadStruc Collaboration

“The HadStruc Collaboration is a group based out of the Jefferson Lab Theory Center and some of the nearby universities,” said HadStruc member Joseph Karpie, a postdoctoral researcher in Jefferson Lab’s Center for Theoretical and Computational Physics. “We have some people at William & Mary and Old Dominion University.”

Other collaboration members who are co-authors on the paper are Jefferson Lab scientists Robert Edwards, Colin Egerer, Eloy Romero and David Richards. The William & Mary Department of Physics is represented by Hervé Dutrieux, Christopher Monahan and Kostas Orginos, who also has a joint position at Jefferson Lab. Anatoly Radyushkin is also a Jefferson Lab joint faculty member affiliated with Old Dominion University, while Savvas Zafeiropoulos is at Université de Toulon in France.

Quantum Forces and Proton Structure

The components of hadrons, called partons, are bound together by the strong interaction, one of the four fundamental forces of nature, along with gravity, electromagnetism and the weak force, which is observed in particle decay.

Karpie explained that the members of the HadStruc Collaboration, like many theoretical physicists worldwide, are trying to determine where and how the quarks and gluons are distributed within the proton. The group uses a mathematical approach known as lattice quantum chromodynamics (QCD) to calculate how the proton is constructed.

Dutrieux, a post-doctoral researcher at William & Mary, explained that the group’s paper outlines a three-dimensional approach to understanding the hadronic structure through the QCD lens. This approach was then carried out via supercomputer calculations.

The 3D concept is based on the notion of generalized parton distributions (GPDs). GPDs offer theoretical advantages over the structures as visualized through one-dimensional parton distribution functions (PDFs), an older QCD approach.

Understanding Proton Spin and Energy

“Well, the GPD is much better in the sense that it allows you to elucidate one of the big questions we have about the proton, which is how its spin arises,” Dutrieux said. “The one-dimensional PDF gives you a very, very limited picture about that.”

He explained that the proton consists in a first approximation of two up quarks and one down quark  known as valence quarks. The valence quarks are mediated by a variable roster of gluons spawned from strong force interactions, which act to glue the quarks together. These gluons, as well as pairs of quarks-antiquarks usually denoted as the sea of quarks-antiquarks when distinguishing them from the valence quarks are continually being created and dissolving back into the strong force.

One of the stunning realizations on the proton’s spin came in 1987, when experimental measurements demonstrated that the spin of quarks contributes to less than half of the overall spin of the proton. In fact, a lot of the proton’s spin could arise from the gluon spin and the motion of partons in the form of orbital angular momentum. A lot of experimental and computational effort is still necessary to clarify this situation.

“GPDs represent a promising opportunity to access this orbital angular part and produce a firmly grounded explanation of how the proton’s spin is distributed among quarks and gluons,” Dutrieux noted.

He went on to say that another aspect that the collaboration hopes to address through GPDs is a concept known as the energy momentum tensor.

“The energy momentum tensor really tells you how energy and momentum are distributed inside your proton,” Dutrieux said. “They tell you how your proton interacts with gravity as well. But right now, we’re just studying its distribution of matter.”

New Frontiers in Hadron Research

Karpie pointed out that the HadStruc Collaboration’s GPD theory is already being examined in experiments at high-energy facilities worldwide. Two processes for examining hadron structure through GPDs, deeply virtual Compton scattering (DVCS) and deeply virtual meson production (DVMP), are being conducted at Jefferson Lab and other facilities.

Karpie and Dutrieux expect the group’s work to be on the slate of experiments at the Electron-Ion Collider (EIC), a particle accelerator being built at DOE’s Brookhaven National Laboratory on Long Island. Jefferson Lab has partnered with Brookhaven National Laboratory on the project.

It’s expected that the EIC will be powerful enough to probe hadrons beyond the point at which today’s instruments start to lose signal, but the exploration of the structure of how hadrons are assembled won’t be waiting for the EIC to come online.

“We have some new experiments at Jefferson Lab. They’re collecting data now and giving us information for comparing to our calculations,” Karpie said. “And then we hope to be able to build up and get even better information at the EIC. It is all part of this progress chain.”

Website: International Conference on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Supermassive Black Hole Caught Doing Something Never Seen Before

As far as supermassive black holes go, the one at the center of the Milky Way is relatively sedate. But, even in its supposed quiescent stat...