Saturday, December 21, 2024

Probing New Physics at Cosmic Dawn #sciencefather #HEP awards #Physics #...

New Study Challenges Presence of Intermediate-Mass Black Hole in Omega Centauri




Research published in Astronomy & Astrophysics has cast doubt on the supposed discovery of an intermediate-mass black hole in the star cluster Omega Centauri. Initial findings suggested a black hole with a mass equivalent to 8,200 times that of the Sun resided at the cluster's core. However, a reanalysis indicates the high-velocity stars in this dense region could instead be influenced by a cluster of stellar-mass black holes. According to Justin Read, a physicist at the University of Surrey, in a statement, the likelihood of an intermediate black hole now appears slim, with its mass potentially less than 6,000 solar masses.

Why Intermediate-Mass Black Holes Matter

Intermediate-mass black holes, sitting between stellar-mass and supermassive black holes, are theorised to bridge the evolutionary gap between these extremes. Despite being crucial to understanding black hole growth, their existence remains elusive. Scientists initially believed the gravitational effects of an intermediate-mass black hole in Omega Centauri were responsible for accelerating stars to high speeds. As explained by Andrés Bañares Hernández from the Instituto de Astrofísica de Canarias, to publications, investigating this cluster has refined the methods used to detect such objects.

New Data from Pulsar Observations

The revised analysis incorporated pulsar data, enhancing the accuracy of gravitational field measurements within Omega Centauri. Pulsars, the rapidly spinning remnants of collapsed stars, emit beams of radiation detectable as periodic pulses. Variations in their timing provided deeper insights into the gravitational dynamics of the cluster. This data led researchers to conclude that stellar-mass black holes, rather than an intermediate-mass black hole, are the likely cause of observed stellar velocities.

Future Prospects in Black Hole Research

While the study has not confirmed the existence of an intermediate-mass black hole in Omega Centauri, the researchers remain optimistic. According to Read, in his statment, ongoing advancements in pulsar timing techniques are expected to enhance the precision of black hole searches. These findings also offer a platform for understanding pulsar formation within dense star clusters.

Website: International Conference on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : https://hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Friday, December 20, 2024

New Type of Magnetism Discovered That Could Make Electronics 1000x Faster




Altermagnetism, a newly imaged class of magnetism, offers potential for the development of faster and more efficient magnetic memory devices, increasing operation speeds by up to a thousand times.

Researchers from the University of Nottingham have demonstrated that this third class of magnetism, combining properties of ferromagnetism and antiferromagnetism, could revolutionize computer memory and reduce environmental impact by decreasing reliance on rare elements.
Altermagnetism’s Unique Properties

A groundbreaking study has imaged a newly discovered type of magnetism called altermagnetism for the first time. This discovery could pave the way for developing advanced magnetic memory devices capable of operating up to a thousand times faster than current technologies.

Altermagnetism is a unique magnetic order where tiny magnetic building blocks align in opposite (antiparallel) directions, similar to antiferromagnetism. However, unlike traditional antiferromagnetic materials, the crystal structures hosting these magnetic moments are rotated relative to one another, creating a distinct magnetic pattern.

Researchers from the University of Nottingham’s School of Physics and Astronomy have confirmed the existence of this third class of magnetism and demonstrated its control within microscopic devices. Their findings, published on December 11 in Nature, mark a significant step toward practical applications in next-generation technology.



Research Findings and Potential Impacts

Professor Peter Wadley, who led the study, explains: “Altermagnets consist of magnetic moments that point antiparallel to their neighbors. However, each part of the crystal hosting these tiny moments is rotated with respect to its neighbors. This is like antiferromagnetism with a twist! But this subtle difference has huge ramifications.”

Magnetic materials are used in the majority of long-term computer memory and the latest generation of microelectronic devices. This is not only a massive and vital industry but also a significant source of global carbon emissions. Replacing the key components with altermagnetic materials would lead to huge increases in speed and efficiency while having the potential to massively reduce our dependency on rare and toxic heavy elements needed for conventional ferromagnetic technology.

Altermagnets combine the favorable properties of ferromagnets and antiferromagnets into a single material. They have the potential to lead to a thousand-fold increase in speed of microelectronic components and digital memory while being more robust and energy efficient.

Website: International Conference on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : https://hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Quantum Devices: Heisenberg Spin Chain Dynamics #sciencefather #HEP awar...

Thursday, December 19, 2024

Physicists ‘Bootstrap’ Validity of String Theory




String theory, conceptualized more than 50 years ago as a framework to explain the formation of matter, remains elusive as a “provable” phenomenon. But a team of physicists has now taken a significant step forward in validating string theory by using an innovative mathematical method that points to its “inevitability.”

String theory posits that the most basic building blocks of nature are not particles, but, rather, one-dimensional vibrating strings that move at different frequencies in determining the type of particle that emerges akin to how vibrations of string instruments produce an array of musical notes.

In their work, reported in the journal Physical Review Letters, New York University and Caltech researchers posed the following question: “What is the math question to which string theory is the only answer?” This approach to understanding physics is known as the “bootstrap,” which is reminiscent of the adage about “pulling yourself up by your bootstraps” producing results without additional assistance or, in this case, input.

The bootstrap has previously allowed physicists to understand why general relativity and various particle theories like the interactions of gluons inside of protons are mathematically inevitable: they are the only consistent mathematical structures, under certain criteria.

“This paper provides an answer to this string-theory question for the first time,” says Grant Remmen, a James Arthur Postdoctoral Fellow in NYU’s Center for Cosmology and Particle Physics and one of the authors of the paper. “Now that these mathematical conditions are known, it brings us a step closer to understanding if and why string theory must describe our universe.”

The paper’s authors, who also included Clifford Cheung, a professor of theoretical physics at Caltech, and Aaron Hillman, a Caltech postdoctoral researcher, add that this breakthrough may be useful in better understanding quantum gravity it seeks to reconcile Einstein’s theory of relativity, which explains large-scale gravity, with quantum mechanics, which describes particle activity at the smallest scales.

“This approach opens a new area of study in analyzing the uniqueness of string amplitudes,” explains Remmen. “The development of tools outlined in our research can be used to investigate deformations of string theory, allowing us to map a space of possibilities for quantum gravity.”

Website: International Conference on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : https://hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Wednesday, December 18, 2024

A Physics Discovery So Strange It’s Changing Quantum Theory




MIT physicists surprised to discover electrons in pentalayer graphene can exhibit fractional charge.

New theoretical research from MIT physicists explains how it could work, suggesting that electron interactions in confined two-dimensional spaces lead to novel quantum states, independent of magnetic fields.

MIT physicists have made significant progress in understanding how electrons can split into fractional charges. Their findings reveal the conditions that create exotic electronic states in graphene and other two-dimensional materials.

This new research builds on a recent discovery by another MIT team led by Assistant Professor Long Ju. Ju’s group observed that electrons seem to carry “fractional charges” in pentalayer graphene a structure made of five stacked graphene layers placed on a similar sheet of boron nitride.

Ju discovered that when he sent an electric current through the pentalayer structure, the electrons seemed to pass through as fractions of their total charge, even in the absence of a magnetic field. Scientists had already shown that electrons can split into fractions under a very strong magnetic field, in what is known as the fractional quantum Hall effect. Ju’s work was the first to find that this effect was possible in graphene without a magnetic field which until recently was not expected to exhibit such an effect.

The phenemonon was coined the “fractional quantum anomalous Hall effect,” and theorists have been keen to find an explanation for how fractional charge can emerge from pentalayer graphene.

The new study, led by MIT professor of physics Senthil Todadri, provides a crucial piece of the answer. Through calculations of quantum mechanical interactions, he and his colleagues show that the electrons form a sort of crystal structure, the properties of which are ideal for fractions of electrons to emerge.

“This is a completely new mechanism, meaning in the decades-long history, people have never had a system go toward these kinds of fractional electron phenomena,” Todadri says. “It’s really exciting because it makes possible all kinds of new experiments that previously one could only dream about.”

In 2018, MIT professor of physics Pablo Jarillo-Herrero and his colleagues were the first to observe that new electronic behavior could emerge from stacking and twisting two sheets of graphene. Each layer of graphene is as thin as a single atom and structured in a chicken-wire lattice of hexagonal carbon atoms. By stacking two sheets at a very specific angle to each other, he found that the resulting interference, or moiré pattern, induced unexpected phenomena such as both superconducting and insulating properties in the same material. This “magic-angle graphene,” as it was soon coined, ignited a new field known as twistronics, the study of electronic behavior in twisted, two-dimensional materials.

“Shortly after his experiments, we realized these moiré systems would be ideal platforms in general to find the kinds of conditions that enable these fractional electron phases to emerge,” says Todadri, who collaborated with Jarillo-Herrero on a study that same year to show that, in theory, such twisted systems could exhibit fractional charge without a magnetic field. “We were advocating these as the best systems to look for these kinds of fractional phenomena,” he says.

Website: International Conference on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : https://hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Master Balance Equations in Physics Informed ML! #sciencefather #HEP Awa...