Thursday, April 3, 2025

Stellar Time Machine: Rare Particle Decay Sheds Light on the Sun’s Mysterious Origins




New experiments on thallium decay have helped determine the Sun formed over 10–20 million years, improving stellar nucleosynthesis models.

Have you ever wondered how long it took our Sun to form in the stellar nursery where it was born? An international team of scientists has just brought us closer to the answer. They successfully measured a rare nuclear process, bound-state beta decay, in fully ionized thallium-205 (²⁰⁵Tl⁸¹⁺) ions at the Experimental Storage Ring (ESR) of GSI/FAIR in Germany. This breakthrough sheds new light on how the radioactive isotope lead-205 (²⁰⁵Pb) is formed in asymptotic giant branch (AGB) stars and helps refine estimates of the Sun’s formation timeline. Their findings were published in Nature.

Current estimates suggest the Sun took tens of millions of years to form from its parent molecular cloud. This timeline is inferred from the presence of long-lived radionuclides that were produced shortly before the Sun’s birth. These isotopes were created in AGB stars, dying stars of intermediate-mass, and spread through the solar neighborhood via stellar winds.

Although these radionuclides have long since decayed, they left behind traceable amounts of their decay products in primitive meteorites, allowing scientists to reconstruct their origin. To accurately time the Sun’s formation, scientists look for radionuclides that are produced exclusively by the slow neutron capture process (s-process), with no contamination from other nucleosynthesis pathways. The best candidate is ²⁰⁵Pb an “s-only” nucleus that fits these criteria.

Reversing Roles in Atomic Decay

On Earth, the isotope ²⁰⁵Pb decays into ²⁰⁵Tl through a process where one of its protons combines with an atomic electron, transforming into a neutron and emitting an electron neutrino. This decay known as electron capture relies on the very small energy difference between ²⁰⁵Pb and ²⁰⁵Tl. However, the higher electron binding energies in ²⁰⁵Pb (due to its greater nuclear charge, Z = 82) make this transformation energetically favorable. Interestingly, if all electrons are stripped from the atoms such as in extremely high-temperature environments the situation reverses.

Without electrons, ²⁰⁵Tl becomes unstable and undergoes beta-minus decay to form ⁵²⁰⁵Pb. This inversion occurs in asymptotic giant branch (AGB) stars, where temperatures of several hundred million Kelvin fully ionize atoms. The production of ²⁰⁵Pb in AGB stars, therefore, depends critically on the rate at which ²⁰⁵Tl decays under these ionized conditions. However, this decay cannot be observed in typical laboratory settings because, under normal conditions, ²⁰⁵Tl is stable.

The decay of 205Tl is only energetically possible if the produced electron is captured into one of the bound atomic orbits in 205Pb. This is an exceptionally rare decay mode known as bound-state beta decay. Moreover, the nuclear decay leads to an excited state in 205Pb which is situated only by a minuscule 2.3 kiloelectronvolt above the ground state but is strongly favored over the decay to the ground state. The 205Tl-205Pb pair can be imagined as a stellar seesaw model, as both decay directions are possible, and the winner depends on the stellar environment conditions of temperature and (electron) density and on the nuclear transition strength which was the great unknown in this stellar competition.

Pioneering the Bound-State Beta Decay Experiment

This unknown has now been unveiled in an ingenious experiment conducted by an international team of scientists coming from 37 institutions representing twelve countries. Bound-state beta decay is only measurable if the decaying nucleus is stripped of all electrons and is kept under these extraordinary conditions for several hours. Worldwide, this is only possible at the GSI/FAIR heavy-ion Experimental Storage Ring (ESR) combined with the fragment separator (FRS).

“The measurement of 205Tl81+ had been proposed in the 1980s, but it has taken decades of accelerator development and the hard work of many colleagues to bring to fruition,” says Professor Yury Litvinov of GSI/FAIR, spokesperson of the experiment. “A plethora of groundbreaking techniques had to be developed to achieve the required conditions for a successful experiment, like production of bare 205Tl in a nuclear reaction, its separation in the FRS and accumulation, cooling, storage and monitoring in the ESR.”

“Knowing the transition strength, we can now accurately calculate the rates at which the seesaw pair 205Tl-205Pb operates at the conditions found in AGB stars,” says Dr. Riccardo Mancino, who performed the calculations as a post-doctoral researcher at the Technical University of Darmstadt and GSI/FAIR.



The 205Pb production yield in AGB stars has been derived by researchers from the Konkoly Observatory in Budapest (Hungary), the INAF Osservatorio d’Abruzzo (Italy), and the University of Hull (UK), implementing the new 205Tl/205Pb stellar decay rates in their state-of-the-art AGB astrophysical models. “The new decay rate allows us to predict with confidence how much 205Pb is produced in AGB stars and finds its way into the gas cloud which formed our Sun,” explains Dr. Maria Lugaro, researcher at Konkoly Observatory. “By comparing with the amount of 205Pb we currently infer from meteorites, the new result gives a time interval for the formation of the Sun from the progenitor molecular cloud of ten to twenty million years that is consistent with other radioactive species produced by the slow neutron capture process.”

Collaborative Science Illuminates Solar Origins

“Our result highlights how groundbreaking experimental facilities, collaboration across many research groups, and a lot of hard work can help us understand the processes in the cores of stars. With our new experimental result, we can uncover how long it took our Sun to form 4.6 billion years ago,” says Guy Leckenby, doctoral student from TRIUMF and first author of the publication.

The measured bound-state beta decay half-life is essential to analyze the accumulation of 205Pb in the interstellar medium. However, other nuclear reactions are also important including the neutron capture rate on 205Pb for which an experiment is planned utilizing the surrogate reaction method in the ESR. These results clearly illustrate the unique possibilities offered by the heavy-ion storage rings at GSI/FAIR allowing to bring the Universe to the lab.

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : www.tumblr.com/blog/victoriaanisa






Wednesday, April 2, 2025

Do we live in a simulation? Researcher claims he found proof of our universe’s source code




What if the universe isn’t as spontaneous as it seems? What if the galaxies, the laws of physics even you are all running on code? It’s a theory that’s captivated scientists and sci-fi fans alike. And now, a physicist says he may have found the universe’s source code.

The idea that we might be living in a simulation really took off in 2003, when Oxford philosopher Nick Bostrom suggested it could be more likely than not that our reality is a hyper-advanced computer program. Since then, researchers have been chasing signs of anything that might resemble a glitch in the matrix.

But physicist Michael Vopson is taking a different approach. Instead of looking for broken pixels in the cosmos, he’s searching for efficiency patterns that suggest our universe is built like a well-optimized algorithm. At the heart of his theory is something called the Second Law of Infodynamics.





Unlike the traditional laws of thermodynamics, which describe energy and entropy, Vopson’s law applies to information itself. He argues that over time, the universe doesn’t tend toward chaos but toward compressed order. He suggests the universe is operating like a vast data optimization program.

This behavior extends beyond physics, too. Genetic information, for instance, doesn’t behave as randomly as Darwinian theory might suggest. Instead, it seems to minimize information entropy over time in the same way a system is designed to store and transmit data as efficiently as possible. In short, Vopson believes this could be evidence of the universe’s source code at work.

Of course, not everyone’s convinced and why should they be? Some scientists are skeptical, saying the simulation theory treads dangerously close to pseudoscience or even theology dressed up in tech lingo. After all, is there a real difference between an all-powerful creator and a superintelligent programmer?

Still, Vopson’s claims open the door to a new way of looking at the cosmos. If he’s right, it means the universe isn’t just expanding: it’s compressing. Not into black holes, as stars do when they die, but into a beautifully ordered string of digital logic.

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : www.tumblr.com/blog/victoriaanisa

Tuesday, April 1, 2025

Quantum Teleportation Achieved Over Internet For The First Time




A quantum state of light was successfully teleported through more than 30 kilometers (around 18 miles) of fiber optic cable amid a torrent of internet traffic – a feat of engineering once considered impossible.

The impressive demonstration by researchers in the US in 2024 may not help you beam to work to beat the morning traffic, or download your favourite cat videos faster.

However, the ability to teleport quantum states through existing infrastructure represents a monumental step towards achieving a quantum-connected computing network, enhanced encryption, or powerful new methods of sensing.




"This is incredibly exciting because nobody thought it was possible," says Prem Kumar, a Northwestern University computing engineer who led the study.

"Our work shows a path towards next-generation quantum and classical networks sharing a unified fiber optic infrastructure. Basically, it opens the door to pushing quantum communications to the next level."

Bearing a passing resemblance to Star Trek transport systems that ghost passengers across time and space in the blink of an eye, teleportation takes the quantum possibilities of an object in one location and, by carefully destroying it, forces the same balance of possibilities onto a similar object in another location.

Though acts of measuring the two objects seal their fates in the same instant, the process of entangling their quantum identities still requires sending a single wave of information between points in space.

Like fairy floss in a spring shower, the quantum state of any object is a hazy smear of possibility at risk of melting into reality moments after creation. Electromagnetic waves of radiation and the thermal bumping-and-grinding of moving particles quickly reduces the quantum significance into decoherence if it isn't protected in some way.

Shielding quantum states inside computers is one thing. Sending a single photon through optical fibers humming with bank transactions, cat videos, and text messages while protecting its quantum state is far more daunting. You might as well cast your quantum fairy floss into the Mississippi and hope it tastes as good at the end.

To preserve their lonely photon's precious state against a 400 gigabit-per-second current of internet traffic, the team of researchers applied a variety of techniques that restricted the photon's channel and reduced the chances it might scatter and mix with other waves."We carefully studied how light is scattered and placed our photons at a judicial point where that scattering mechanism is minimized," says Kumar.

"We found we could perform quantum communication without interference from the classical channels that are simultaneously present."

While other research groups have successfully transmitted quantum information alongside classical data streams in simulations of the internet, Kumar's team is the first to teleport a quantum state alongside an actual internet stream.

Each test further suggests the quantum internet is inevitable, giving computing engineers a whole new toolkit for measuring, monitoring, encrypting, and calculating our world like never before, without needing to reinvent the internet to do it.

"Quantum teleportation has the ability to provide quantum connectivity securely between geographically distant nodes," says Kumar.

"But many people have long assumed that nobody would build specialized infrastructure to send particles of light. If we choose the wavelengths properly, we won't have to build new infrastructure. Classical communications and quantum communications can coexist."

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : www.tumblr.com/blog/victoriaanisa

Saturday, March 29, 2025

“Infinite energy could exist” ― Is it possible to convert cosmic rays into electricity?




A new form of energy is being explored that is entirely renewable, cost effective, and environmentally friendly. Infinite energy sounds too good to be true, but is it?

What are these cosmic rays known as neutrinos?

In 2015, Japanese scientist, Takaaki Kajita and Canadian scientist, Arthur McDonald were awarded the Nobel Prize in Physics for their discovery that neutrinos have a mass. Neutrinos are the tiny subatomic particles that permeate just about everything in the universe.

These neutrinos, once thought to be massless, are capable of converting their miniscule mass into energy, in accordance with Einstein’s famous equation, E=mc2.

This equation underpins much of our contemporary understanding of the universe. This same theory posits that neutrinos can be used to generate energy on earth to power our homes, cars, and cell phones.

If it is possible, how would neutrino power work?

A neutrino power cell would work much like the photovoltaic cell (found in this fence that is revolutionising solar power) in solar panels. Part of the neutrino’s kinetic energy would be converted to electricity through the use of a neutrino power cell likely made of layers of silicon and carbon applied to a metallic substrate.

When the neutrinos hit the neutrino power cells, their resonance would be converted into the optimal resonating frequency for an electrical conductor.

What would the benefits of neutrino power be?

Though neutrino power cells function in much the same way as photovoltaic cells, there is one crucial way in which they differ they do not require sunlight. One of the greatest drawbacks of solar power is its reliance on the sun for its power. In regions where sunlight is scarce, solar power is not a viable means of producing electricity. Neutrino-generated electricity does not have this same constraint. It will work day and night, all year round.

Sounds good, but what are neutrino power’s potential drawbacks?

Some people in the scientific community are concerned that these particles could be damaging to humans and the environment due to the fact that they are highly ionizing and contain high amounts of energy. Additionally, because only a small amount of cosmic rays make it to earth, they would be very difficult to harvest and channel into electricity.

However, as technology develops and scientists create new ways of harvesting neutrinos (like Enhanced Air Dynamo collection technology), the possibility for the widespread use of neutrino power will only grow.

Because neutrino power cubes would generate much less power than solar power, our entire power system would need to be overhauled. Devices that require lots of electricity to run (like televisions) will need to be modified so that they require less electricity to operate.

Though the initial infrastructure cost would be substantial, the long-term benefits of this power would far outweigh the initial investment fee. Some estimates place the cost of neutrino power at 50% of the cost of solar power. As devices require less and less power to run, the potential viability of neutrino power looks more and more promising.

Are neutrinos the long-awaited key to “infinite power”?

It is hard to say with absolute certainty what neutrinos will mean for the way we produce and think about electricity. Despite this uncertainty, if neutrinos prove to be a viable means of producing electricity at scale, the possibilities are certainly infinite.

Neutrino power has the potential to fundamentally alter how we conceive of electricity. Electricity will cease to be the often tenuous resource it is now and will be come as natural to everyone on the globe as the air that we breathe. Infinite energy production is a hot-button issue (see this potentially infinite source of energy). Could neutrinos be the answer to all our energy needs? Only time will tell.

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : www.tumblr.com/blog/victoriaanisa

Friday, March 28, 2025

New Research Suggests Dark Energy Is Evolving, Challenging Cosmology Models

Fresh DESI data suggests dark energy may evolve over time, contradicting long-standing cosmic expansion theories.



New research suggests that dark energy, the unknown force driving the accelerated expansion of the universe, may not be behaving as previously believed. Observations from a large-scale 3D map indicate that this force could be evolving over time, contradicting long-standing models of cosmology. The data, derived from extensive observations of millions of galaxies, provides fresh insights into the fundamental workings of the universe. Scientists are now questioning whether the standard model, which assumes a constant dark energy force, remains valid in explaining the cosmos.

Evidence from DESI's 3D Mapping Project

According to the Dark Energy Spectroscopic Instrument (DESI), which operates from the Nicholas U. Mayall 4-Meter Telescope at Kitt Peak National Observatory, findings suggest that dark energy may not be a fixed force. The analysis is based on data collected over three years, covering nearly 15 million galaxies and quasars. DESI's ability to simultaneously capture light from 5,000 galaxies allows researchers to examine large-scale cosmic structures and measure how the universe's expansion rate has changed over time.

Comparisons with Other Cosmic Observations

As reported, inconsistencies arise when DESI's findings are compared with measurements from the cosmic microwave background (CMB) and type Ia supernovae. The CMB consists of fossil light from the early universe, has been used to track the expansion history of the cosmos. Similar to thaf type Ia supernovae, often called "standard candles" for their uniform brightness, have provided key distance measurements. The DESI data suggests that dark energy's influence may have weakened over time, a deviation from the accepted cosmological model that assumes it remains unchanged.

Implications for Future Research

Speaking in an official press release, DESI Project Scientist Arjun Dey stated that these findings could redefine humanity's understanding of the universe. The instrument's ongoing observations will continue to refine knowledge of dark energy's role. Scientists anticipate that by the project's conclusion, further data will offer a clearer picture of whether dark energy fluctuates, potentially reshaping existing theories of cosmic evolution.

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : www.tumblr.com/blog/victoriaanisa

Thursday, March 27, 2025

New type of quantum computer studies the dance of elementary particles




The standard model of particle physics is our best theory of the elementary particles and forces that make up our world: particles and antiparticles, such as electrons and positrons, are described as quantum fields. They interact through other force-fields, such as the electromagnetic force that binds charged particles.

To understand the behaviour of these quantum fields and with that our universe, researchers perform complex computer simulations of quantum field theories. Unfortunately, many of these calculations are too complicated for even our best supercomputers and pose great challenges for quantum computers as well, leaving many pressing questions unanswered.

Using a novel type of quantum computer, Martin Ringbauer’s experimental team at the University of Innsbruck, and the theory group led by Christine Muschik at IQC at the University of Waterloo, Canada report in a publication in the journal Nature Physics how they have successfully simulated a complete quantum field theory in more than one spatial dimension.

A natural representation of quantum fields

The crux that makes simulations of quantum field theories challenging for quantum computers comes from the need to capture the fields that represent the forces between particles, such as the electromagnetic force between charged particles. These fields can point in different directions and have different degrees of strength or excitations. Such objects do not neatly fit into the traditional binary computing paradigm based on zeros and ones, which is the basis of today's classical and quantum computers.

The new advance was possible through the combination of a qudit quantum computer developed in Innsbruck, and a qudit algorithm to simulate fundamental particle interactions developed in Waterloo. This approach is based on using up to five values per quantum information carrier, rather than just zero and one, to efficiently store and process information. Such a quantum computer is ideally suited to the challenge of representing complex quantum fields in particle physics calculations. “Our approach enables a natural representation of the quantum fields, which makes the computations much more efficient,” explains Michael Meth, lead author of the study. This enabled the team to observe the fundamental features of quantum electrodynamics in two spatial dimensions.

Huge potential for particle physics

Already in 2016, the creation of particle-antiparticle pairs was demonstrated in Innsbruck. “In that demonstration, we simplified the problem by restricting the particles to move on a line. Removing this restriction is a critical step to use quantum computers to understand fundamental particle interactions,” says Christine Muschik. Now the teams have presented the first quantum simulation in two spatial dimensions, “In addition to the behaviour of particles, we now also see magnetic fields between them, which can only exist if particles are not restricted to move on a line and bring us an important step closer to studying nature,” explains Martin Ringbauer.

The new work on quantum electrodynamics is just the beginning. With only a few qudits more it will be possible to extend the current results not only to three-dimensional models, but also to the strong nuclear force, which holds atoms together and contains many of physics’ remaining mysteries. “We are excited about the potential of quantum computers to contribute to the study of these fascinating questions,” says Ringbauer enthusiastically.

The research was financially supported among others by the Austrian Science Fund (FWF), the Austrian Federal Ministry of Education, Science and Research, the Austrian Research Promotion Agency (FFG), the European Union, and the Canada First Research Excellence Fund.

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : www.tumblr.com/blog/victoriaanisa

Wednesday, March 26, 2025

This Tiny Particle is Redefining Our View of the Atomic Nucleus



University of Queensland scientists have cracked a long-standing puzzle in nuclear physics, showing that nuclear polarization, once thought to hinder experiments with muonic atoms, has a much smaller effect than expected.

This surprising result clears a major obstacle and paves the way for a new era of atomic research, offering deeper insights into the mysterious inner workings of atomic nuclei using exotic, muon-based atoms.

Breakthrough in Muonic Atom Research

Researchers at the University of Queensland have made a significant breakthrough in muonic atom research, paving the way for new experiments in nuclear physics.

A team from UQ’s School of Mathematics and Physics combined theoretical models and experimental data to demonstrate that nuclear polarization does not significantly interfere with the study of muonic atoms.

Co-author Dr Odile Smits said this discovery removes a key obstacle, allowing scientists to use muonic atoms to gain clearer insights into the magnetic structure of atomic nuclei.

What Are Muonic Atoms?

“Muonic atoms are really fascinating!” Dr. Smits said.

“A muon is a heavy version of the electron and can be produced by cosmic rays or in the lab.

“They can orbit the nucleus just like electrons, forming muonic atoms, but because they are much closer to the nucleus, they see its structure in far greater detail.”

Tidal Effects Inside the Atom

Experiments using muonic atoms have been hindered by uncertainty over how nuclear polarization affects hyperfine structure, which is a small energy splitting within atoms. Nuclear polarization distorts the shape of the nucleus, in a similar way to how the moon creates tides on Earth.

“Our work has shown that the nuclear polarization effect of muons is far smaller than previously considered,” Dr. Smits said.

The team was led by UQ’s Associate Professor Jacinda Ginges who said the breakthrough removed a major barrier to studying muonic atoms.

“This opens the way for new experiments that will deepen our understanding of nuclear structure and fundamental physics.”

New Pathways for Nuclear Physics

The team worked with Dr. Natalia Oreshkina at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany, who confirmed the results with independent calculations.

The UQ finding will be a stimulus for new experiments with muonic atoms such as at the Paul Scherrer Institute in Zurich where a research program is underway to study these exotic atoms in greater detail.

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : www.tumblr.com/blog/victoriaanisa

Stellar Time Machine: Rare Particle Decay Sheds Light on the Sun’s Mysterious Origins

New experiments on thallium decay have helped determine the Sun formed over 10–20 million years, improving stellar nucleosynthesis models . ...