Wednesday, November 6, 2024

Max Flow Min Cut theorem in Quantum Computing #sciencefather #science #H...

Achieving the “Impossible”: Nuclear Physicists Are Closer Than Ever to the Elusive Double Magic Nuclei





Advancements in nuclear physics may soon enable the creation of stable, superheavy nuclei, paving the way for new materials and insights into atomic stability.

A team of scientists has made significant advancements in the quest to create new, long-lasting superheavy nuclei. These double magic nuclei, which have a precise number of protons and neutrons that form a highly stable configuration, are exceptionally resistant to decay. Their research could deepen our understanding of the forces that bind atoms and pave the way for the development of new materials with unique properties. This work brings us a step closer to the so-called “Island of Stability,” a theoretical region in the nuclei chart where it’s believed some nuclei could exist far longer than those created so far.

Key Findings in the Search for “Island of Stability”

The study, led by Professor Feng-Shou Zhang, has predicted promising reactions between different elements that could be used in experiments to create double magic nuclei. One key discovery involves a reaction between a special type of radioactive calcium isotope and a plutonium target, which could produce the predicted double magic nuclei 298Fl. Another potential double magic nuclei, 304120, could be created by combining vanadium and berkelium, although this reaction is currently less likely to succeed.

Exploring New Paths in Nuclear Science

The idea of creating these superheavy nuclei is exciting because they could offer new insights into atomic structure and possibly lead to the development of advanced materials. If these elements can be made and remain stable, they might have unique properties that could be useful in various scientific fields.

Innovative Techniques Lead the Way

To make these discoveries, the research team used advanced theoretical models designed to study heavy ion collisions. By carefully choosing the right combinations of projectiles and targets, the scientists have laid out a clear path for future experiments that could bring us closer to achieving these goals.

Challenges and Future Directions

Despite the progress, there are still challenges ahead, such as improving the efficiency of these reactions. However, this research brings us closer to understanding the “Island of Stability” and the intriguing possibilities it holds. The work not only advances the field of nuclear physics but also sets the stage for future discoveries that could have wide-ranging impacts on science and technology.

This research was conducted in collaboration with Beijing Normal University, Beijing Academy of Science and Technology, Guangxi University, and the National Laboratory of Heavy Ion Accelerator of Lanzhou.

Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : https://hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Tuesday, November 5, 2024

Thomas K. Gaisser, a pioneer of particle astrophysics #sciencefather #sc...

Quantum Breakthrough Could Propel Superconductors to the Next Level





Researchers uncover novel magnetic and electronic properties in thin films of kagome magnets.

Physicists at Rice University and their collaborators have made a discovery that sheds new light on magnetism and electronic interactions in advanced materials, with the potential to transform technologies like quantum computing and high-temperature superconductors.

Led by Zheng Ren and Ming Yi, the research team’s study on iron-tin (FeSn) thin films reshapes scientific understanding of kagome magnets  materials named after an ancient basket-weaving pattern and structured in a unique, latticelike design that can create unusual magnetic and electronic behaviors due to the quantum destructive interference of the electronic wave function.

The findings, published in Nature Communications, reveal that FeSn’s magnetic properties arise from localized electrons, not the mobile electrons scientists previously thought. This discovery challenges existing theories about magnetism in kagome metals in which itinerant electrons were assumed to drive magnetic behavior. By providing a new perspective on magnetism, the research team’s work could guide the development of materials with tailored properties for advanced tech applications such as quantum computing and superconductors.

Impact on Quantum Materials Research

“This work is expected to stimulate further experimental and theoretical studies on the emergent properties of quantum materials, deepening our understanding of these enigmatic materials and their potential real-world applications,” said Yi, an associate professor of physics and astronomy and Rice Academy Senior Fellow.




Using an advanced technique that combines molecular beam epitaxy and angle-resolved photoemission spectroscopy, the researchers created high-quality FeSn thin films and analyzed their electronic structure. They found that even at elevated temperatures, the kagome flat bands remained split, an indicator that localized electrons drive magnetism in the material. This electron correlation effect adds a new layer of complexity to understanding how electron behavior influences magnetic properties in kagome magnets.

Selective Band Renormalization and Electron Correlations

The study also revealed that some electron orbitals showed stronger interactions than others, a phenomenon known as selective band renormalization previously observed in iron-based superconductors, offering a fresh perspective on how electron interactions influence the behavior of kagome magnets.

“Our study highlights the complex interplay between magnetism and electron correlations in kagome magnets and suggests that these effects are non-negligible in shaping their overall behavior,” said Ren, a Rice Academy Junior Fellow.

Beyond advancing the understanding of FeSn, the research has broader implications for materials with similar properties. Insights into flat bands and electron correlations could influence the development of new technologies such as high-temperature superconductors and topological quantum computation, where the interplay of magnetism and topological flat bands generates quantum states that can be used as quantum logic gates.

Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : https://hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA

Monday, November 4, 2024

"Predicting Nuclear Masses with Naive Bayesian Model!"

Quantum Sensing, the Elusive Gravitons, and the Quest to Unite Quantum Physics with Gravity





LIGO and Quantum Noise

Quantum sensing technologies, such as those present at the Laser Interferometer Gravitational-Wave Observatory, have already helped us detect gravitational waves ripples in the space-time fabric caused by massive cosmic events like black hole collisions. As explained in a recent article from MIT, such events “stretch and squeeze” space-time on a minute scale, detected by lasers that LIGO bounces between mirrors along its 4-kilometer arms​.

However, quantum noise random fluctuations from particles spontaneously appearing and disappearing in empty space has put a limit on LIGO’s sensitivity. To counteract this, scientists have developed a technique called “squeezing,” which reduces noise by sacrificing precision in one property, such as light’s power, to gain accuracy in another, such as frequency​.

Despite this demonstration of sensing in detecting gravitational waves, detecting a single graviton is still yet to done. According to calculations, massive quantum resonators cooled to near absolute zero could, in theory, detect single gravitons as gravitational waves interact with them. If set up correctly, a small gravitational wave passing by could impart a measurable disturbance to the resonator—an event that might finally bridge the gap between quantum physics and gravity.

Gravitons and Quantum Sensing: How It Could Work

While gravitons have long hid behind an ever-elusive veil, a recent study published in Nature Communications, outlines an experimental framework that suggests detecting single gravitons could be within reach.

The proposed setup centers around a quantum acoustic resonator a device capable of detecting subtle shifts in energy states, or “quantum jumps.” This resonator, imagined as a bar-shaped mass of material like beryllium or aluminum, would be cooled to its quantum ground state, a temperature close to absolute zero, to minimize interference from other particles.

According to the study, the key is to use gravitational waves, disturbances in space-time itself, as a source to stimulate the resonator. If a graviton interacts with the resonator, it would cause the resonator to transition from its ground state to an excited state, which would signal the absorption of a graviton​.

The study highlights several technological advancements that make this ambitious experiment plausible. Modern quantum sensors now allow researchers to maintain control over quantum states of massive objects and continuously monitor energy transitions in real-time. By designing a resonator with high precision, they hope to detect even the minuscule energy changes resulting from a single graviton’s interaction.

One of the main obstacles, however, is quantum noise, where random fluctuations interfere with the quantum states of the resonator. To overcome this, the team uses continuous sensing techniques that allow for non-destructive measurement of the resonator’s energy levels. By tracking these levels and correlating them with gravitational wave events detected by facilities like LIGO, they hope to single out shifts specifically caused by single gravitons​.

Overcoming Practical Challenges

Despite the strength of this proposal, practical challenges remain. Cooling the resonator to the ground state is no simple task and thermal noise could mimic the signals we seek to detect. Additionally, LIGO’s existing infrastructure could support these new detectors by correlating detected events with classical gravitational waves to confirm graviton events. However, continuous monitoring of energy levels without disturbing the interaction remains a technical challenge.

Beyond the technical obstacles, there remains the philosophical one: a single graviton detection would not fully confirm gravity’s quantized nature. According to the highlighted Nature study, the experiment would show evidence of energy exchange consistent with a graviton without proving the exact quantum state of gravity. So, while single graviton detection would act as a proof of concept, further experiments would be required to clarify our understanding​.

Quantum Sensing and the Mystique of Gravity

Outside of whether or not we will see theories of the existence of gravitons come to fruition, the path to graviton detection serves as an example to how developments in quantum technologies can complement our search for answers to longstanding questions in physics. Graviton detection is only one potential application. Techniques like squeezing and advanced quantum sensors may also reveal gravitational waves that are currently undetectable.

Beyond gravity, integrating quantum mechanics with gravitational theory could also help us to understand cosmic phenomena like black holes and the Big Bang on a fundamental level. Physicists, however, remain cautiously optimistic. We still have a ways to go to develop mature quantum sensing technology, but as we do, the boundary between the worlds of quantum mechanics and relativity grows ever thinner.

Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link : https://hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
Contact us : contact@sciencefather.com


Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA