Saturday, May 31, 2025

Pinned Particles Impede Crystallization

Experiments challenge the assumption that crystals form more easily when some of the constituent particles are fixed in place.




A popular way to grow thin crystalline films is through physical vapor deposition, a process in which gaseous particles settle onto a surface and gradually arrange themselves into an ordered structure. Naively, one might expect this crystallization to be assisted by anchoring some of the same particles to the surface to serve as starting locations for crystal growth. But that is not the case according to new experimental work by Chandan Mishra at the Indian Institute of Technology Gandhinagar and his colleagues. The team’s counterintuitive findings could inspire improved strategies for material design.

Mishra and his colleagues pinned a few micrometer-sized beads of silica to a glass surface in a random, sparsely distributed pattern. They then suspended thousands of other silica beads in a liquid that they placed on the surface. These mobile beads descended onto the surface under gravity and then, via their mutual short-range attraction, clustered together with or without a pinned bead. The team studied the formation, evolution, and disintegration of these clusters at the single-bead level using video microscopy, supported by theoretical models and molecular-dynamics simulations.

Any given bead could serve as the starting point for a cluster, but the researchers found that, relative to the mobile beads, the pinned ones were less likely to do so. These pinned beads hindered crystallization because their inability to move made it harder for surrounding beads to form the specific arrangements required for crystal growth. The team says that future work could explore particle systems with long-range interactions and other features.

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : https://www.tumblr.com/blog/hepcs



Friday, May 30, 2025

Strong Nuclear Force Is Not So Weak at Electroweak Temperatures

A new model of quark–gluon plasma finds that the strong force was more potent in the early Universe than previously thought.



Soon after the big bang, the Universe was filled with a hot primordial particle soup, with freely streaming quarks and gluons among the ingredients. As the Universe cooled, the strong force steadily strengthened until, at a temperature in energy units of about 0.15 giga-electron-volts (GeV), or 2 × 1013 K, it could bind the quarks and gluons into protons, neutrons, and other hadrons. Now a new computation by researchers at the University of Milano-Bicocca and the National Institute for Nuclear Physics (INFN) in Italy has traced this thermal history of quarks and gluons back even further to evaluate how important the strong force was before the hadrons emerged.

The researchers used a computational technique called lattice quantum chromodynamics. The method discretizes continuous space-time into the largest and finest grid of points that can fit within a supercomputer’s memory. At the end of the simulation, the spacing between the points is extrapolated to zero. The need for extrapolation limited previous simulations to temperatures below 1 GeV. The researchers found that by keeping a certain quark–gluon coupling constant fixed as they made the space-time grid finer, the spurious effects of the grid are considerably reduced, enabling controlled extrapolations at high temperatures.

Putting their new method to work, the researchers computed the pressure of quark–gluon plasma made of up, down, and strange quarks for temperatures from 3 to 165 GeV. Surprisingly, the pressures even at these high early temperatures could not be described using a model of weakly interacting quark–gluon plasma, implying that the strong force was influential sooner after the big bang than previously assumed.

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : https://www.tumblr.com/blog/hepcs



Thursday, May 29, 2025

Inertia of Superconducting Particles in Twisted Trilayer Graphene

The graphene multilayer’s kinetic inductance is both high and tunable, making it a promising material for quantum technologies.




Graphene-based superconductors are a class of materials with many superconducting phases, all of which are tunable by an electric field. One of the hallmarks of superconductivity is kinetic inductance, which quantifies the material’s tendency to oppose a change in current and which arises from the inertia of charge carriers. Rounak Jha at the University of Basel, Switzerland, and his colleagues now report the measurement of tunable kinetic inductance in so-called magic-angle twisted trilayer graphene. Furthermore, they find that this kinetic inductance can be unusually large, making trilayer graphene a promising prospect for superconducting quantum computers and quantum sensors.

The researchers built a superconducting quantum interference device consisting of a loop of superconducting molybdenum-rhenium interrupted by two “weak links” of twisted trilayer graphene. They applied electrical potentials to electrodes above and below the graphene and mapped the change in resistance in the weak links. This procedure pinpointed the temperature and voltage at which the trilayers become superconducting and determined their critical current. Analyzing how this critical current changes in response to a magnetic field for various applied voltages gave the kinetic inductance, which is inversely proportional to the critical current density. These measurements showed that the kinetic inductance can be tuned by altering the field applied via the electrodes and that it can reach 150 nanohenries per square (the units used to quantify thin-film kinetic inductance), 2 orders of magnitude larger than that of commonly used superconductors.

Although trilayer graphene is likely to be harder to scale up than those other materials, the researchers say that it may complement currently available elements and lead to novel superconducting circuits.

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : https://www.tumblr.com/blog/hepcs

Wednesday, May 28, 2025

New Method to Detect Topological Invariants in Quantum Materials

Recent advancements in quantum materials research have revealed a novel method for identifying topological invariants. These invariants are properties of topological spaces that remain unchanged through continuous transformations. Topological materials are crucial for the development of technologies such as quantum computing and energy-efficient systems. However, their unique properties have historically been difficult to detect.



About Topological Invariants

Topological invariants are fundamental characteristics that define the shape of materials at the quantum level. They are not influenced by external appearances but are intrinsic to the material’s structure. A common analogy is the comparison between a donut and a coffee cup. Both have one hole and are thus topologically equivalent. In contrast, a wada and an idli are not equivalent due to differing hole counts.

Significance of Topological Materials

Topological materials, including topological insulators and superconductors, exhibit unusual electronic behaviours. The properties of these materials are determined by topological invariants like winding numbers and Chern numbers. These numbers govern how electrons behave in different shapes of materials, affecting their potential applications in technology.

New Detection Method

Researchers from the Raman Research Institute have introduced an innovative approach to detect topological invariants using the spectral function. This function acts as a quantum fingerprint, revealing how energy and particles interact within a material. The study, led by Professor Dibyendu Roy and PhD student Kiran Babasaheb Estake, demonstrates that the spectral function can provide vital information about the topology of various materials.

Advantages Over Traditional Techniques

Traditionally, techniques like Angle-Resolved Photoemission Spectroscopy (ARPES) were employed to study electron behaviour. However, the new method marks that the spectral function can also unveil topological features. This breakthrough could facilitate a more comprehensive understanding of topological materials, leading to new discoveries in condensed matter physics.

Implications for Future Technology

The ability to detect topological invariants could revolutionise the field of quantum computing and next-generation electronics. By providing a universal tool for exploring topological materials, this research may lead to advancements in energy-efficient systems and innovative technologies.

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : https://www.tumblr.com/blog/hepcs

Tuesday, May 27, 2025

Dark Matter Reimagined: The NGC 1052-DF2 Galaxy That Challenged The Cosmos

A new study challenges past theories, suggesting the ultra-diffuse galaxy NGC 1052-DF2 may have dark matter, just spread out more evenly across the galaxy.




Ordinary, or baryonic, matter including everything we can see, such as Earth, the Sun, stars, and galaxies makes up less than 5 per cent of the universe's total mass-energy content. The remaining 25 per cent is dark matter, while roughly 70 per cent is dark energy a force that counteracts gravity. Both are invisible and not yet fully understood.

Dark matter is believed to dominate the universe. This invisible substance is said to make up most of its mass and interacts only through gravity not through light or physical contact. It's called 'dark' because it emits no light or energy, yet its gravitational pull is crucial. Dark matter plays a crucial role in galaxy formation and evolution. A galaxy can be assumed as a merry-go-round where the lights and horses are the stars. If it spins too fast, everything should fly off unless there's extra invisible weight keeping it grounded. That weight is dark matter. Visible galaxies emerge within these dark matter halos as gas falls inward and condenses. When the gas becomes dense enough, star formation begins, giving rise to the galaxies.

In this context, the ultra-diffuse galaxy (UDG) NGC 1052-DF2 has long baffled astronomers due to its apparent deficiency in dark matter. This deficiency poses a significant challenge to the standard cosmological model, which relies on dark matter to explain the large-scale structure of the universe.

A recent study titled "Challenges in modelling the dark matter halo of NGC 1052–DF2: Cored versus cuspy halo models" by K Aditya, a postdoctoral researcher at the Indian Institute of Astrophysics (IIA), offers a compelling reinterpretation of these findings. The research study, published in Astronomy and Astrophysics (2024), delves into the structural modelling of the galaxy's dark matter halo.

The mystery of galaxy NGC 1052-DF2

In an exclusive interview with ETV Bharat's Anubha Jain, Aditya talked in detail about his research work. He said, "I studied an ultra-diffuse galaxy called NGC 1052-DF2, which is located about 62 million light-years away. These galaxies are unusual as they are very large but contain very few stars, so they appear extremely faint and spread out."

He said earlier studies suggested that NGC 1052-DF2 might have almost no dark matter. That's surprising, because dark matter is usually thought to be essential for holding galaxies together. According to those studies, the total mass of this galaxy is around 340 million times the mass of our Sun, while the stars themselves make up about 200 million solar masses, which means most of the mass seems to come from baryonic matter like stars, and very little, if any, from dark matter.

"This goes against our current understanding of how galaxies form and behave," he added. "The dark matter in the galaxy depends a lot on the assumptions we make about the shape and structure of the dark matter 'halo'—the invisible cloud of dark matter that surrounds galaxies and the available kinematic data. I used a statistical technique called Markov Chain Monte Carlo (MCMC) to test different models and find out which ones best match the real observations of how stars move within the galaxy."

He said that galaxies form when gas falls into big clumps of dark matter, called dark matter halos, and starts forming stars. At first, these dark matter halos are thought to be dense in the centre we call that a "cuspy" shape. As the galaxy evolves, powerful events like supernova explosions and activity around black holes can push against the dark matter and make it spread out more evenly, turning the centre into a flatter, "cored" shape.

Models with a sharp, dense centre of dark matter (called "cuspy" halos) don't fit the data well these models were no better than assuming there's no dark matter at all. They couldn't explain how stars behave in the outer parts of the galaxy. But models with a large dark matter core where the dark matter is more evenly spread out fit the observations much better. In these models, the galaxy contains about 10 times more dark matter than stars, which matches what current galaxy formation theories expect. So even though NGC 1052-DF2 looks strange because of how few stars it has, the results suggest it may still have a normal amount of dark matter just spread out very diffusely, like its stars. This means it might not be so unusual after all, and still fits within the standard picture of how galaxies form in the universe, Aditya mused.

Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : https://www.tumblr.com/blog/hepcs

Monday, May 26, 2025

The most powerful laser in the US reaches 2 petawatts, setting new records

ZEUS will open new frontiers in imaging, cancer therapy, and astrophysics



The ZEUS laser facility at the University of Michigan has vaulted the United States to the forefront of high-intensity laser science. In its first official experiment, ZEUS achieved a peak power of 2 petawatts  twice the output of any other laser in the country. Although this burst, more than 100 times the world's total electricity output, lasts only 25 quintillionths of a second, it represents a major milestone in American research capabilities.

"This milestone marks the beginning of experiments that move into unexplored territory for American high field science," said Karl Krushelnick, director of the Gérard Mourou Center for Ultrafast Optical Science, which houses ZEUS. The university describes the facility, constructed for $16 million, as a "bargain" given its scale and potential.

Supported by the US National Science Foundation, ZEUS operates as a user facility, welcoming research teams from across the country and around the world. Proposals for experiments are selected through an independent review process, ensuring that the laser's capabilities are used for the most promising scientific inquiries. Research conducted at ZEUS is expected to advance fields such as medicine, national security, materials science, astrophysics, plasma science, and quantum physics.

The ZEUS system is primarily built from commercial components and incorporates advanced technologies, including a double chirped pulse amplifier and programmable acousto-optic filters that preserve the precise bandwidth and phase required for ultrashort, high-power pulses. The laser can deliver compressed pulses as brief as 20 femtoseconds, enabling a wide range of cutting-edge experiments.

Inside a space roughly the size of a school gymnasium, ZEUS houses three distinct target areas, each tailored to specific research applications. Target Area 2 is designed for experiments involving solid targets and ion acceleration, while Target Area 3 is optimized for laser wakefield acceleration and can measure electron energies up to approximately 5 GeV.

The facility's ability to split its beam allows it to achieve intensities up to a million times greater than a single beam alone, enabling the study of extreme phenomena such as quantum vacuum structures and the creation of matter-antimatter pairs from empty space.

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : https://www.tumblr.com/blog/hepcs

Saturday, May 24, 2025

A newly discovered type of superconductor is also a magnet




Magnets and superconductors go together like oil and water or so scientists have thought. But a new finding by MIT physicists is challenging this century-old assumption.

In a paper appearing in the journal Nature, the physicists report that they have discovered a "chiral superconductor" a material that conducts electricity without resistance, and also, paradoxically, is intrinsically magnetic. What's more, they observed this exotic superconductivity in a surprisingly ordinary material: graphite, the primary material in pencil lead.

Graphite is made from many layers of graphene atomically thin, lattice-like sheets of carbon atoms that are stacked together and can easily flake off when pressure is applied, as when pressing down to write on a piece of paper. A single flake of graphite can contain several million sheets of graphene, which are normally stacked such that every other layer aligns. But every so often, graphite contains tiny pockets where graphene is stacked in a different pattern, resembling a staircase of offset layers.

The MIT team has found that when four or five sheets of graphene are stacked in this "rhombohedral" configuration, the resulting structure can exhibit exceptional electronic properties that are not seen in graphite as a whole.

In their new study, the physicists isolated microscopic flakes of rhombohedral graphene from graphite, and subjected the flakes to a battery of electrical tests. They found that when the flakes are cooled to 300 millikelvins (about -273 degrees Celsius), the material turns into a superconductor, meaning that any electrical current passing through the material can flow through without resistance.

They also found that when they swept an external magnetic field up and down, the flakes could be switched between two different superconducting states, just like a magnet. This suggests that the superconductor has some internal, intrinsic magnetism. Such switching behavior is absent in other superconductors.

"The general lore is that superconductors do not like magnetic fields," says Long Ju, assistant professor of physics at MIT. "But we believe this is the first observation of a superconductor that behaves as a magnet with such direct and simple evidence. And that's quite a bizarre thing because it is against people's general impression of superconductivity and magnetism."

Graphene twist


In everyday conductive materials, electrons flow through in a chaotic scramble, whizzing by each other, and pinging off the material's atomic latticework. Each time an electron scatters off an atom, it has in essence met some resistance, and loses some energy as a result, normally in the form of heat. In contrast, when certain materials are cooled to ultracold temperatures, they can become superconducting, meaning that the material can allow electrons to pair up, in what physicists term "Cooper pairs."

Rather than scattering away, these electron pairs glide through a material without resistance. With a superconductor, then, no energy is lost in translation.

Since superconductivity was first observed in 1911, physicists have shown many times that zero electrical resistance is a hallmark of a superconductor. Another defining property was first observed in 1933, when the physicist Walther Meissner discovered that a superconductor will expel an external magnetic field. This "Meissner effect" is due in part to a superconductor's electron pairs, which collectively act to push away any magnetic field.

Physicists have assumed that all superconducting materials should exhibit both zero electrical resistance, and a natural magnetic repulsion. Indeed, these two properties are what could enable magnetic levitation (Maglev) trains, whereby a superconducting rail repels and therefore levitates a magnetized car.

Ju and his colleagues had no reason to question this assumption as they carried out their experiments at MIT. In the last few years, the team has been exploring the electrical properties of pentalayer rhombohedral graphene. The researchers have observed surprising properties in the five-layer, staircase-like graphene structure; most recently, that it enables electrons to split into fractions of themselves. This phenomenon occurs when the pentalayer structure is placed atop a sheet of hexagonal boron nitride (a material similar to graphene), and slightly offset by a specific angle, or twist.

Curious as to how electron fractions might change with changing conditions, the researchers followed up their initial discovery with similar tests, this time by misaligning the graphene and hexagonal boron nitride structures. To their surprise, they found that when they misaligned the two materials and sent an electrical current through, at temperatures less than 300 millikelvins, they measured zero resistance. It seemed that the phenomenon of electron fractions disappeared, and what emerged instead was superconductivity.

The researchers went a step further to see how this new superconducting state would respond to an external magnetic field. They applied a magnet to the material, along with a voltage, and measured the electrical current coming out of the material. As they dialed the magnetic field from negative to positive (similar to a north and south polarity) and back again, they observed that the material maintained its superconducting, zero-resistance state, except in two instances, once at either magnetic polarity.

In these instances, the resistance briefly spiked, before switching back to zero, and returning to a superconducting state.

"If this were a conventional superconductor, it would just remain at zero resistance, until the magnetic field reaches a critical point, where superconductivity would be killed," says Zach Hadjri, a first-year student in the group. "Instead, this material seems to switch between two superconducting states, like a magnet that starts out pointing upward, and can flip downwards when you apply a magnetic field. So it looks like this is a superconductor that also acts like a magnet, which doesn't make any sense."

'One of a kind'


As counterintuitive as the discovery may seem, the team observed the same phenomenon in six similar samples. They suspect that the unique configuration of rhombohedral graphene is the key. The material has a very simple arrangement of carbon atoms. When cooled to ultracold temperatures, the thermal fluctuation is minimized, allowing any electrons flowing through the material to slow down, sense each other, and interact.

Such quantum interactions can lead electrons to pair up and superconduct. These interactions can also encourage electrons to coordinate. Namely, electrons can collectively occupy one of two opposite momentum states, or "valleys." When all electrons are in one valley, they effectively spin in one direction, versus the opposite direction. In conventional superconductors, electrons can occupy either valley, and any pair of electrons is typically made from electrons of opposite valleys that cancel each other out. The pair overall then has zero momentum, and does not spin.

In the team's material structure, however, they suspect that all electrons interact such that they share the same valley, or momentum state. When electrons then pair up, the superconducting pair overall has a "non-zero" momentum, and spinning, that along with many other pairs can amount to an internal, superconducting magnetism.

"You can think of the two electrons in a pair spinning clockwise, or counterclockwise, which corresponds to a magnet pointing up, or down," Tonghang Han, a fifth-year student in the group, explains. "So we think this is the first observation of a superconductor that behaves as a magnet due to the electrons' orbital motion, which is known as a chiral superconductor. It's one of a kind. It is also a candidate for a topological superconductor, which could enable robust quantum computation."

"Everything we've discovered in this material has been completely out of the blue," says Zhengguang Lu, a former postdoc in the group and now an assistant professor at Florida State University. "But because this is a simple system, we think we have a good chance of understanding what is going on, and could demonstrate some very profound and deep physics principles."

"It is truly remarkable that such an exotic chiral superconductor emerges from such simple ingredients," adds Liang Fu, professor of physics at MIT. "Superconductivity in rhombodedral graphene will surely have a lot to offer."

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : https://www.tumblr.com/blog/hepcs

Thursday, May 22, 2025

The physics of the universe appear to be fine-tuned for life. Why?

It appears that we live on the knife-edge, where only the narrowest combination of values for the fundamental constants allow life, and especially conscious life, to arise.


The fundamental constants of nature seem perfectly tuned to allow life to exist. If they were even a little bit different, we simply wouldn't be here. Given this grave existential fact, we are forced to ask a question: Why?

Our laws of physics contain several parameters with values that we cannot predict from theory alone. These are known as the fundamental constants. We can only go out and measure their values and then insert those values into our equations to make physics work. All told, there are about two dozen such numbers. They express such basic facts as the speed of light, the strength of the four fundamental forces, and the masses of elementary particles.

What's especially unnerving about these numbers is how carefully crafted they appear to be. If any were different, even by a tiny amount, our universe would be radically altered. For example, stronger gravity would make stars burn out faster, preventing the rise of solar systems and life-bearing planets like Earth. If the speed of light were faster or the electron were heavier, stars wouldn't even form in the first place. If Planck's constant were different, the cosmos would be totally unrecognizable.

It appears that we live on the knife-edge, where only the narrowest combination of values for the fundamental constants allow life, and especially conscious life, to arise.

This is the heart of the fine-tuning argument: that the universe appears to favor the existence of life. So why are we here?

One answer is to simply end the line of thinking right there. The constants are the way they are because if they were different, we wouldn't be here to observe it. This is called the anthropic argument: Life exists because otherwise, it would be impossible for life to exist.

Many physicists and philosophers consider this argument a little less than satisfying. While it does answer the question, we seem to have this nagging feeling that there's more to the story.

Another possibility is that there's more than one universe that we live in a multiverse, with each different universe "sampling" different values of the constants. There are a few extremely hypothetical ideas in physics that can lead to the multiverse. One is through the concept of eternal inflation, where the very early universe never ended its period of rapid expansion and different portions of the overall multiverse "pinched off" to create their own bubble universes.

Another path to the multiverse comes from string theory, where extra spatial dimensions can twist up on themselves in a dizzying number of ways. Each possible arrangement would lead to new values of the physical constants, and even entirely new laws of physics. The range of possible combinations is known as the landscape, with our universe consisting of one point in that landscape.

In these multiverse-inspired ideas, there are a multitude of universes "out there" that don't support life but this one does, so here we are. At the end of the day, it's still the anthropic argument, but at least it's one that explains how different values of the constants can be realized.

But there are issues with both of these ideas. Importantly, both are hypothetical and not supported by any available evidence. We don't know how regular inflation works and whether eternal inflation is even possible. Additionally, string theorists can't make the connection between a particular arrangement of the extra dimensions and the physics it generates, meaning we can't even make testable predictions.

What's more, eternal inflation and string theory contain their own constants that are not "explored" by different iterations of the multiverse. For example, string theory assumes a certain number of extra dimensions a number that is not predicted by the theory itself. And eternal inflation requires any number of extra, unknown parameters to make it work.

So no matter what, we can't yet escape some form of fundamental constant, or some form of knowledge about the universe that we can't explain from our theories themselves. I suppose we'll just have to keep digging.

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : https://www.tumblr.com/blog/hepcs










Tuesday, May 20, 2025

AI enhances Higgs boson’s charm









The CMS collaboration presents a new search for the decay of a Higgs boson into charm quarks, bringing physicists closer to unravelling how this unique particle endows matter with mass


The Higgs Bason discovered at the Large Hadron Collider (LHC) in 2012, plays a central role in the Standard Model of particle physics, endowing elementary particles such as quarks with mass through its interactions. The Higgs boson’s interaction with the heaviest “third-generation” quarks – top and bottom quarks – has been observed and found to be in line with the Standard Model. But probing its interactions with lighter “second-generation” quarks, such as the charm quark, and the lightest “first-generation” quarks – the up and down quarks that make up the building blocks of atomic nuclei – remains a formidable challenge, leaving unanswered the question of whether or not the Higgs boson is responsible for generating the masses of the quarks that make up ordinary matter.

Researchers study the Higgs boson's interactions by looking at how the particle decays into – or is produced with – other particles in high-energy proton–proton collisions at the LHC. At a seminar held at CERN last week, the CMS experiment collaboration reported the results of the first search for a Higgs boson decaying into a pair of charm quarks in collision events where the Higgs boson is produced alongside two top quarks. Exploiting cutting-edge AI techniques, this novel search has been used to set the most stringent limits to date on the interaction between the Higgs boson and the charm quark.

The production of a Higgs boson in association with a top-quark pair, with the Higgs boson decaying into pairs of quarks, is not only a rare process at the LHC but one that is particularly challenging to distinguish from similar-looking background collision events. That’s because quarks immediately produce collimated sprays (or “jets”) of hadrons that travel only a small distance before decaying, making it especially difficult to identify jets originating from charm quarks that are created in the decay of a Higgs boson from jets originating from other types of quark. Traditional identification methods, referred to as “tagging”, struggle to efficiently recognise charm jets, necessitating the development of more advanced discrimination techniques.

“This search required a paradigm shift in analysis techniques,” explains Sebastian Wuchterl, a research fellow at CERN. “Because charm quarks are harder to tag than bottom quarks, we relied on cutting-edge machine-learning techniques to separate the signal from backgrounds.”

The CMS researchers tackled two major hurdles using machine-learning models. The first was the identification of charm jets, which was performed by employing a type of algorithm called a graph neural network. The second was to distinguish Higgs boson signals from background processes, which was addressed with a transformer network – the type of machine learning that is behind ChatGPT but trained to classify events instead of generating dialogues. The charm-tagging algorithm was trained on hundreds of millions of simulated jets to allow it to recognise charm jets with higher accuracy.

Using data collected from 2016 to 2018, combined with the results from previous searches for the decay of the Higgs boson into charm quarks via other processes, the CMS team set the most stringent limits yet on the interaction between the Higgs boson and the charm quark, reporting an improvement of around 35% compared to previous constraints. This places significant bounds on potential deviations from the Standard Model prediction.

“Our findings mark a major step,” says Jan van der Linden, a postdoctoral researcher at Ghent University. “With more data from upcoming LHC runs and improved analysis techniques, we may gain direct insight into the Higgs boson’s interaction with charm quarks at the LHC—a task that was thought impossible a few years ago.”

As the LHC continues to collect data, refinements in charm tagging and Higgs boson event classification could eventually allow CMS, and its companion experiment ATLAS, to confirm the Higgs boson’s decay into charm quarks. This would be a major step towards a complete understanding of the Higgs boson’s role in the generation of mass for all quarks and provide a crucial test of the 50-year-old Standard Model.

Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : www.tumblr.com/blog/victoriaanisa

Monday, May 19, 2025

Quantum Speed Hack: Extra Qubits Slash Measurement Time Without Losing Precision







Quantum scientists have cracked a longstanding problem by devising a method to speed up measurements without losing accuracy, a key hurdle for quantum technology.

By cleverly adding extra qubits, they traded “space” for time, gathering more information faster without destabilizing the fragile quantum systems. This innovative approach, involving top researchers from several major universities, could soon become a standard tool as the race to quantum supremacy heats up.

New Breakthrough in Quantum Measurements


Researchers have discovered a new method to speed up quantum measurements — a key step toward advancing the next generation of quantum technologies.

Fast and accurate quantum measurements are essential for future quantum devices. However, quantum systems are extremely fragile; even small disturbances during measurement can cause significant errors. Until now, scientists faced a fundamental trade-off: they could either improve the accuracy of quantum measurements or make them faster, but not both at once.

Now, a team of quantum physicists, led by the University of Bristol and published in Physical Review Letters, has found a way to break this trade-off.

How Extra Qubits Make a Difference


The team’s approach involves using additional qubits, the fundamental units of information in quantum computing, to “trade space for time.” Unlike the simple binary bits in classical computers, qubits can exist in multiple states simultaneously, a phenomenon known as superposition.

In quantum computing, measuring a qubit typically requires probing it for a relatively long time to achieve a high level of certainty. However, by introducing extra qubits into the measurement process, researchers can gather more information in less time, significantly accelerating the measurement without losing accuracy.



Explaining the Concept Through an Everyday Analogy


Chris Corlett, a PhD student at the University’s School of Physics, and first author on the paper, explained: “Imagine you are shown a picture of two glasses of water – one with 25ml and the other with 20ml, and you have to determine by sight which glass has more water in it. If you’re only shown the picture for one second, you might struggle to tell which glass is more full, but if you’re shown the picture for two seconds, then you can be more confident that you chose the glass with more water in it.

“In our scheme, by including an additional qubit, you increase the amount of information the probe can gather in a fixed amount of time, so we can be more confident about our answer. Adding the qubit is like doubling the volume of each glass to 50ml and 40ml, making it easier to distinguish which is more full in a shorter amount of time due to the greater difference between the two volumes.

“A significant benefit of our approach is that this relationship continues with additional qubits – so for example if you added a third qubit and, by analogy, the volume of the glasses now appears as 75ml and 60ml, you would be able to tell which was greater, with confidence, in just 0.66 seconds – this is the intuition behind our solution.”


Website: International Research Awards on High Energy Physics and Computational Science.


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : www.tumblr.com/blog/victoriaanisa

Saturday, May 17, 2025

A Black Hole is Firing Bullet-Like Blobs of Gas into Space






Black holes are objects that are so dense that not even light can escape their gravitational pull. Created from the spectacular death of massive stars or lurking as supermassive monsters at galactic centres, they warp spacetime around them, creating a boundary called the event horizon—the point of no return. Despite their name suggesting emptiness, black holes are anything but, containing matter compressed to incredible densities while violently transforming their surroundings. They are surrounded by superheated accretion disks. blast powerful jets of radiation across thousands of light-years and distort time itself as predicted by Einstein's relativity.



Supermassive black holes and their host galaxies have evolved together despite their enormous differences in size and mass. It is thought that powerful gas winds expelled at extreme speeds from regions surrounding black holes hold the key to understanding this connection. These high-velocity outflows appear to regulate both the black hole's growth (by limiting how much matter falls in) and the galaxy's development (by pumping energy into the galaxy that can halt star formation.)

A team of researchers have found that the winds aren't smooth as once thought, but instead shoot out as rapid-fire gas "bullets" carrying surprising amounts of energy. This discovery, which changes our understanding of how galaxies evolve with their central black holes, came from an international team led by Japan's space agency (JAXA). Professor Christine Done from the Centre for Extragalactic Astronomy was one of two European scientists involved in this research as part of the X-ray Imaging and Spectroscopy Mission (XRISM), which studies hot gas winds flowing through galaxies.

The team used XRISM's advanced spectroscopic instruments and observed winds flowing from a supermassive black hole at 20-30% light speed. XRSIM is a joint mission between the Japan Aerospace Exploration Agency, NASA and ESA and is well suited to the task. Rather than a uniform flow, they discovered these winds contain at least five distinct gas components moving at different velocities—suggesting gas ejection occurs in intermittent bursts like geysers or through gaps in surrounding space.

This finding challenges established theories about how galaxies and black holes evolve together, especially since these winds carry over 1,000 times more energy than previously known galactic-scale winds. This groundbreaking observation, only possible with XRISM's unique ability to resolve the complex velocity structure of these cosmic outflows, fundamentally changes our understanding of black holes' influence on their host galaxies.

Website: International Research Awards on High Energy Physics and Computational Science.

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : www.tumblr.com/blog/victoriaanisa

Friday, May 16, 2025

Nuclear Glow Illuminates Dark Matter









High-energy particles or gamma rays are usually needed to kick an atomic nucleus up to a higher-energy state. But last year, scientists excited thorium-229 nuclei with just laser light. Laser-excited nuclei could be useful for making precise timekeepers and sensitive quantum sensors. And now, Wolfram Ratzinger at the Weizmann Institute of Science in Israel and his colleagues have shown how these nuclei also provide a way to detect certain speculative particles that may constitute dark matter [1].

Several models of dark matter involve axions or other extremely light bosons. Thanks to their lightness, these particles would have to be abundant—so much so that they would collectively behave like a classical field, oscillating at a frequency proportional to their mass. The particles’ interactions with the building blocks of nuclei—quarks and gluons—would cause various nuclear properties to oscillate at that same frequency. Among those properties is the energy of the photon emitted by an excited thorium-229 nucleus. Crucially, the oscillations in that energy are predicted to be much more pronounced, and therefore easier to detect, than those in other properties.

Ratzinger and his colleagues conducted the first-ever search for these oscillations in a previously reported spectrum of light emitted by excited thorium-229 nuclei. Finding no oscillations, the researchers set upper limits on the coupling strength of ultralight dark matter particles to quarks and gluons for particles ranging in mass from 10–20 to 10–13 eV. These limits are less stringent than those obtained through other means, but the team anticipates that ongoing and future experiments could set much stronger and possibly decisive constraints.



Website: International Research Awards on High Energy Physics and Computational Science#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : www.tumblr.com/blog/victoriaanisa

Successful experiments uncover new island of asymmetric fission




An international team of scientists has identified an unexpected region of heavy, neutron-deficient isotopes in the nuclear chart where nuclear fission is predominantly governed by an asymmetric mode. The experiment was conducted by the R3B-SOFIA collaboration at GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany, within the FAIR Phase 0 program.

The research team investigated the fission properties of 100 different neutron-deficient exotic isotopes, ranging from iridium (atomic number Z = 77) to thorium (Z = 90). These isotopes with a low number of neutrons relative to the number of protons were produced via the fragmentation of a relativistic primary beam of uranium-238 at 87.6% of the speed of light, and subsequently separated and identified individually using the GSI/FAIR Fragment Separator FRS.

In the GSI/FAIR experimental setup R3B (Reactions with Relativistic Radioactive Beams), extended by a set of specialized systems developed for the unique pattern of fission experiments, the isotopes were directed onto a segmented lead target. There, the excitation to a few megaelectron volts above their ground state energy induced the fission into two lighter fragments. The double ionization chamber TWIN-MUSIC enabled the measurement of the charges of both fission products.

Additionally, the large superconducting dipole magnet GLAD, cooled with helium, separated the fission fragments according to their momentum-to-charge ratio, bending them toward large-area detector arrays for tracking and time-of-flight measurement to reconstruct the reaction dynamics.

Terabytes of data collected during ten days of experiments reveal a transition toward increasingly asymmetric fission in neutron-deficient heavy nuclei. This marks the discovery of a new "island of asymmetric fission" in the nuclear chart, characterized by a surprising dominance of light fission fragments of krypton (Z = 36).

"Beyond mapping this novel phenomenon, our findings enhance our understanding of both terrestrial and cosmic fission processes," says Pierre Morfouace from CEA, France, first author of the Nature publication. "Moreover, they offer valuable benchmarks for theoretical models, significantly improving their predictive power for fission fragment distributions in neutron-rich systems, relevant, for example, in r-process nucleosynthesis in the cosmos."

The discovery is a major step forward for our understanding of the fission recycling expected in supernova explosions feeding the element production in our galaxy and a start toward identifying the extent of a newly observed region in the nuclear chart where asymmetric fission dominates.

"In addition, the results are an impressive demonstration of the R3B setup's performance and give an outlook on FAIR in the future," adds Dr. Haik Simon, head of the GSI/FAIR department "Super Fragment Separator" and deputy spokesman of the R3B collaboration.

"The combination of the Super Fragment Separator, the successor to the FRS, and the planned NUSTAR experiment program at FAIR will offer unique possibilities for the production and selection of even rarer and more exotic isotopes to address open research questions in this area."

A series of follow-up experiments is planned at the international accelerator facility FAIR (Facility for Antiproton and Ion Research), which is currently under construction at GSI. The new superconducting fragment separator Super-FRS will be key to mapping the phenomenon of asymmetrical fission in greater detail and to revealing fundamental aspects of nuclear matter under extreme conditions.

Website: International Research Awards on High Energy Physics and Computational Science


#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : www.tumblr.com/blog/victoriaanisa

Thursday, May 15, 2025

“Universe Could Implode Instantly”: False Vacuum Theory Suggests Reality Itself Is Balancing on a Terrifying Quantum Edge






The universe, with its vast, awe-inspiring expanse, is home to phenomena that captivate and challenge our understanding. From exploding stars to enigmatic black holes, it seems like a place of constant chaos. However, scientists reassure us that this cosmic ballet is underpinned by stability. This stability, known as the vacuum state, supports consistent physical laws. Yet, beneath this apparent calm lies a potential crisis: the threat of false vacuum decay. This concept suggests a universe teetering on the brink of a dramatic transformation, driven by quantum fields.

Understanding Quantum Fields and Their Role in the Universe

To comprehend the potential instability of the universe, one must first grasp the concept of quantum fields. Picture the electromagnetic field, a familiar example, responsible for phenomena like magnetic interactions and electricity. These fields, though invisible, permeate everything, shaping the universe in ways we might not even realize. They are the backbone of our reality, guided by the laws of physics.

However, for a field to maintain stability, it must rest in its lowest energy state, known as a “true” vacuum. The concern lies with the Higgs field, responsible for giving particles their mass. Some scientists theorize that the Higgs might be in a false vacuum state, poised to shift to a lower energy level. This shift could trigger a cascade of changes that would drastically alter the fabric of the universe.



Website: International Research Awards on High Energy Physics and Computational Science

#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : www.tumblr.com/blog/victoriaanisa




Wednesday, May 14, 2025

Lightning-Fast Alchemy: CERN Just Turned Lead Into Gold – Then Watched It Vanish




An experiment has measured gold formation from lead nuclei during near-miss collisions in the Large Hadron Collider.

These high-speed interactions trigger electromagnetic processes that occasionally eject three protons, yielding gold atoms. Billions are made, but only for a split second.

Lead to Gold: A Modern Alchemical Feat at CERN

In a newly published study in Physical Review Journals, scientists from CERN’s ALICE experiment have observed something extraordinary: the transformation of lead into gold inside the powerful Large Hadron Collider (LHC).

For centuries, alchemists dreamed of turning lead into gold. Known as chrysopoeia, this ancient quest was based on the idea that both metals were heavy and shared similar properties. Of course, we now know that lead and gold are completely different elements, and no chemical process can turn one into the other.

A New Kind of Alchemy—Powered by Physics

In the 20th century, nuclear physics revealed that atoms could change from one element into another. This could happen naturally through radioactive decay or be triggered in laboratories using high-energy particles like neutrons or protons. Gold has been made this way before, but now, the ALICE team has measured a completely new method of element-changing magic—this time using near misses between high-speed lead atoms.

When two lead nuclei race through the LHC at nearly the speed of light, they sometimes just miss each other. Instead of colliding head-on, they pass close enough to trigger intense electromagnetic forces. These interactions can generate bursts of energy that change the very identity of atomic nuclei, including turning lead into gold.




Photon Bursts and Nuclear Shifts

The electromagnetic field emanating from a lead nucleus is particularly strong because the nucleus contains 82 protons, each carrying one elementary charge. Moreover, the very high speed at which lead nuclei travel in the LHC (corresponding to 99.999993% of the speed of light) causes the electromagnetic field lines to be squashed into a thin pancake, transverse to the direction of motion, producing a short-lived pulse of photons. Often, this triggers a process called electromagnetic dissociation, whereby a photon interacting with a nucleus can excite oscillations of its internal structure, resulting in the ejection of small numbers of neutrons and protons. To create gold (a nucleus containing 79 protons), three protons must be removed from a lead nucleus in the LHC beams.
“It is impressive to see that our detectors can handle head-on collisions producing thousands of particles, while also being sensitive to collisions where only a few particles are produced at a time, enabling the study of electromagnetic ‘nuclear transmutation’ processes,” says Marco Van Leeuwen, ALICE spokesperson.

Counting Gold Atoms in the Particle Smash

The ALICE team used the detector’s zero degree calorimeters (ZDC) to count the number of photon–nucleus interactions that resulted in the emission of zero, one, two and three protons accompanied by at least one neutron, which are associated with the production of lead, thallium, mercury and gold, respectively. While less frequent than the creation of thallium or mercury, the results show that the LHC currently produces gold at a maximum rate of about 89,000 nuclei per second from lead–lead collisions at the ALICE collision point. Gold nuclei emerge from the collision with very high energy and hit the LHC beam pipe or collimators at various points downstream, where they immediately fragment into single protons, neutrons, and other particles. The gold exists for just a tiny fraction of a second.

A Fleeting Treasure: Billion Gold Atoms, But No Jewelry

The ALICE analysis shows that, during Run 2 of the LHC (2015–2018), about 86 billion gold nuclei were created at the four major experiments. In terms of mass, this corresponds to just 29 picograms (2.9 ×10-11 g). Since the luminosity in the LHC is continually increasing thanks to regular upgrades to the machines, Run 3 has produced almost double the amount of gold that Run 2 did, but the total still amounts to trillions of times less than would be required to make a piece of jewellery. While the dream of medieval alchemists has technically come true, their hopes of riches have once again been dashed.

Website: International Research Awards on High Energy Physics and Computational Science.
#HighEnergyPhysics#ParticlePhysics#QuantumPhysics#AstroparticlePhysics#ColliderPhysics#HiggsBoson#LHC#QuantumFieldTheory#NeutrinoPhysics#PhysicsResearch#ComputationalScience#DataScience#ScientificComputing#NumericalMethods#HighPerformanceComputing#MachineLearningInScience#BigData#AlgorithmDevelopment#SimulationScience#ParallelComputing

Visit Our Website : hep-conferences.sciencefather.com
Nomination Link :hep-conferences.sciencefather.com/award-nomination/?ecategory=Awards&rcategory=Awardee
Registration Link : hep-conferences.sciencefather.com/award-registration/
Member Link : hep-conferences.sciencefather.com/conference-membership/?ecategory=Membership&rcategory=Member
Awards-Winners : hep-conferences.sciencefather.com/awards-winners/
For Enquiries: physicsqueries@sciencefather.com

Get Connected Here:
==================
Social Media Link
Twitter : x.com/Psciencefather
Pinterest : in.pinterest.com/physicsresearchorganisation
Blog : physicscience23.blogspot.com
Instagram : www.instagram.com/victoriaanisa1
YouTube :www.youtube.com/channel/UCzqmZ9z40uRjiPSr9XdEwMA
Tumblr : www.tumblr.com/blog/victoriaanisa









Physicists Catch Light in 'Imaginary Time' in Scientific First

For the first time, researchers have seen how light behaves during a mysterious phenomenon called 'imaginary time '. When you shine ...