Thursday, June 27, 2024

Going the extra mile to squeeze supersymmetry out of CMS data


 

Re-analysing LHC Run 2 data with cutting-edge analysis techniques allowed CMS physicists to address an old discrepancy.


Supersymmetry (SUSY) is an exciting and beautiful theory that answers some of the open questions in particle physics. It predicts that all known particles have a “superpartner” with somewhat different properties. For example, the heaviest quark of the Standard Model, the top quark, would have a superpartner called the top squark, or simply the “stop”. In 2021 the CMS collaboration analysed the entire set of collision data collected from 2016 to 2018 and found features suggesting that it might contain stop particles. In that case, “might” meant that there was less than 5% chance that data containing only known particles could look like what was observed. Instead of waiting many years to collect more data with the hope of reproducing this behaviour, the CMS collaboration decided to reanalyse the same data with upgraded analysis techniques.

The new analysis looks for the simultaneous production of pairs of stops. Each stop decays into a top quark accompanied by several lighter quarks or gluons, which then form bound states known as hadrons, ultimately creating clusters of particles reconstructed in the detector as “jets”. The signal footprint is therefore two top quarks and multiple jets. What makes the analysis challenging is that a very similar footprint is produced by one of the most common Standard Model processes in the LHC: the pair production of top quarks. Top quark production with many accompanying jets is a process that is difficult to accurately simulate, so to have a reliable determination of this background, it must be estimated from observed data.

A commonly used method of estimating backgrounds from data is called the “ABCD method”. It requires two uncorrelated observables that can discriminate between signal and background. The data set can then be divided into four regions (A, B, C and D) depending on the value of each observable being “signal-like” or “background-like”. The subdivision then provides a region dominated by the signal, a region dominated by backgrounds and two intermediate regions. The key feature of the ABCD method is that, following the mathematics of probabilities for independent events, one can estimate the background in the signal-dominated region using only the information from the other regions. The problem with using this method for the stop search is that all simple variables are correlated in this search, making the method invalid. To overcome this issue, CMS physicists have implemented an innovative approach based on advanced machine-learning techniques to determine two variables with a minimal level of correlation. These two variables are then used to divide the data into the four aforementioned regions. The figure below shows the correlation between the two variables for the signal and the background and demonstrates that the signal mostly lies in region “A”. 


International Research Conference on High Energy Physics and Computational Science

More details: -----------------
Visit Our Website : https://x-i.me/hep
Visit Our Conference Submission : https://x-i.me/hepcon
Visit Our Award Nomination : https://x-i.me/hepnom

Get Connected Here: ==================




Wednesday, June 26, 2024

CERN Physicists Searching for Production of Elusive Higgs-Boson Pairs

 



Physicists from the ATLAS Collaboration at CERN’s Large Hadron Collider (LHC) have released the most sensitive search for di-Higgs production and self-coupling yet, achieved by combining five di-Higgs studies of LHC Run 2 data.

Remember how difficult it was to find one Higgs boson? Try finding two at the same place at the same time. Known as di-Higgs production, this fascinating process can tell scientists about the Higgs boson self-interaction. By studying it, physicists can measure the strength of the Higgs boson’s self-coupling, which is a fundamental aspect of the Standard Model that connects the Higgs mechanism and the stability of our Universe. Searching for di-Higgs production is an especially challenging task.

It’s a very rare process, about 1,000 times rarer than the production of a single Higgs boson. During the LHC Run 2, only a few thousand di-Higgs events are expected to have been produced in ATLAS, compared with the 40 million collisions that happened every second. So how can physicists find these rare needles in the data haystack? One way to make it easier to look for di-Higgs production is to search for it in multiple places. By looking at the different ways di-Higgs can decay (decay modes) and putting them together, physicists are able to maximize their chances of finding and studying di-Higgs production. The new result from the ATLAS Collaboration is their most comprehensive search so far, covering over half of all possible di-Higgs events in ATLAS. The five individual studies in this combination each focused on different decay modes, each of which has its pros and cons. For example, the most probable di-Higgs decay mode is into four bottom quarks. However, Standard Model QCD processes are also likely to create four bottom quarks, making it difficult to differentiate a di-Higgs event from this background process. The di-Higgs decay to two bottom quarks and two tau leptons has moderate background contamination but is five times less common and has neutrinos that escape undetected, complicating physicists’ ability to reconstruct the decay.

The decay to multiple leptons, while not too rare, has complex signatures. Other di-Higgs decays are even more rare, such as the decay to two bottom quarks and two photons. This final state accounts for only 0.3% of total di-Higgs decays but has a cleaner signature and much smaller background contamination. By combining the results from searches for each of these decays, the ATLAS physicists were able to find that the probability that two Higgs bosons are produced excludes values more than 2.9 times the Standard-Model prediction. This result is at 95% confidence level, with an expected sensitivity of 2.4 (assuming that this process is not present in nature). They were also able to provide constraints on the strength of the Higgs boson self-coupling, achieving the best-yet sensitivity on this important observable. They found that the magnitude of the Higgs self-coupling constant and the interaction strength of two Higgs bosons and two vector bosons are consistent with Standard Model predictions.


International Research Conference on High Energy Physics and Computational Science

More details: -----------------
Visit Our Website : https://x-i.me/hep
Visit Our Conference Submission : https://x-i.me/hepcon
Visit Our Award Nomination : https://x-i.me/hepnom

Get Connected Here: ==================