A new theoretical analysis connects the results of high-energy particle experiments at the Large Hadron Collider with three-proton correlations inside nuclei. How triplets of protons and neutrons behave is an important ingredient in theories of dense nuclear matter. Directly observing that behavior is beyond the reach of terrestrial labs. However, Alejandro Kievsky of Italy’s National Institute of Nuclear Physics and his collaborators have now demonstrated that it can be inferred from particle collisions recorded by the ALICE experiment at CERN’s Large Hadron Collider in Switzerland [ 1 ]. Last year, the ALICE experiment reported the results of smashing together beams of protons at an energy of 13 TeV. The kaons, protons, and deuterons that reached ALICE’s detectors carried with them correlations that arose when the particles sprang to life from a volume a few femtometers across. To determine what happens in that tiny volume, Kievsky and his collaborators analyzed the case of t...